論文の概要: Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
- arxiv url: http://arxiv.org/abs/2402.04538v2
- Date: Mon, 10 Jun 2024 00:22:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 03:39:46.102367
- Title: Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
- Title(参考訳): トリプルト相互作用によるグラフ変換器の改良:トリプルトグラフ変換器を用いた正確な分子グラフ学習
- Authors: Md Shamim Hussain, Mohammed J. Zaki, Dharmashankar Subramanian,
- Abstract要約: 本稿では,Triplet Graph Transformer(TGT)を提案する。
TGTは、まず2次元グラフから原子間距離を予測し、これらの距離を下流タスクに使用することにより、分子特性予測に適用する。
- 参考スコア(独自算出の注目度): 26.11060210663556
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph transformers typically lack third-order interactions, limiting their geometric understanding which is crucial for tasks like molecular geometry prediction. We propose the Triplet Graph Transformer (TGT) that enables direct communication between pairs within a 3-tuple of nodes via novel triplet attention and aggregation mechanisms. TGT is applied to molecular property prediction by first predicting interatomic distances from 2D graphs and then using these distances for downstream tasks. A novel three-stage training procedure and stochastic inference further improve training efficiency and model performance. Our model achieves new state-of-the-art (SOTA) results on open challenge benchmarks PCQM4Mv2 and OC20 IS2RE. We also obtain SOTA results on QM9, MOLPCBA, and LIT-PCBA molecular property prediction benchmarks via transfer learning. We also demonstrate the generality of TGT with SOTA results on the traveling salesman problem (TSP).
- Abstract(参考訳): グラフ変換器は一般的に3階の相互作用を欠き、分子幾何学予測のようなタスクに不可欠な幾何学的理解を制限する。
本稿では, トリプルトグラフ変換器(TGT)を提案し, 新たなトリプルトアテンションとアグリゲーション機構により, ノードの3タプル内におけるペア間の直接通信を実現する。
TGTは、まず2次元グラフから原子間距離を予測し、これらの距離を下流タスクに使用することにより、分子特性予測に適用する。
新たな3段階トレーニング手順と確率推論により、トレーニング効率とモデル性能がさらに向上する。
本モデルでは,PCQM4Mv2 と OC20 IS2RE のオープンチャレンジベンチマークを用いて,SOTA(State-of-the-art)の新たな結果を得る。
また、転送学習により、QM9、MOLPCBA、LIT-PCBA分子特性予測ベンチマークのSOTA結果を得る。
また、旅行セールスマン問題(TSP)において、SOTAによるTGTの一般性を示す。
関連論文リスト
- Pre-trained Graphformer-based Ranking at Web-scale Search (Extended Abstract) [56.55728466130238]
本稿では,変換器の回帰能力をGNNのリンク予測強度と統合することを目的とした新しいMPGrafモデルを提案する。
我々は、MPGrafの性能を厳格に評価するために、大規模なオフラインおよびオンライン実験を行っている。
論文 参考訳(メタデータ) (2024-09-25T03:33:47Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - K-Order Graph-oriented Transformer with GraAttention for 3D Pose and
Shape Estimation [20.711789781518753]
KOG-Transformer というグラフ構造データに対する2次元から3次元のポーズ推定ネットワークを提案する。
また,GASE-Netという手動データのための3次元ポーズ・ツー・シェイプ推定ネットワークを提案する。
論文 参考訳(メタデータ) (2022-08-24T06:54:03Z) - Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
Graphs [3.0603554929274908]
3D関連誘導バイアスは、分子のような3D原子性グラフで動作するグラフニューラルネットワークには不可欠である。
様々な領域におけるトランスフォーマーの成功に触発されて、これらのインダクティブバイアスをトランスフォーマーに組み込む方法について研究する。
本稿では,Transformerアーキテクチャの強みを利用したグラフニューラルネットワークであるEquiformerを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:40:37Z) - Gophormer: Ego-Graph Transformer for Node Classification [27.491500255498845]
本稿では,egoグラフにフルグラフの代わりにトランスフォーマーを適用した新しいGophormerモデルを提案する。
具体的には、変圧器の入力としてエゴグラフをサンプリングするためにNode2Seqモジュールが提案されており、スケーラビリティの課題が軽減されている。
エゴグラフサンプリングで導入された不確実性に対処するために,一貫性の正則化とマルチサンプル推論戦略を提案する。
論文 参考訳(メタデータ) (2021-10-25T16:43:32Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z) - Mesh Graphormer [17.75480888764098]
グラフ畳み込み強化変換器であるMesh Graphormerを1枚の画像から3次元の人間のポーズとメッシュ再構成を行う。
論文 参考訳(メタデータ) (2021-04-01T06:16:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。