論文の概要: Can Large Language Model Agents Simulate Human Trust Behaviors?
- arxiv url: http://arxiv.org/abs/2402.04559v1
- Date: Wed, 7 Feb 2024 03:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 16:53:42.850588
- Title: Can Large Language Model Agents Simulate Human Trust Behaviors?
- Title(参考訳): 大規模言語モデルエージェントは人間の信頼行動をシミュレートできるか?
- Authors: Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Kai Shu, Adel Bibi,
Ziniu Hu, Philip Torr, Bernard Ghanem, Guohao Li
- Abstract要約: 大規模言語モデル(LLM)エージェントは、社会科学などの応用において人間をモデル化するためのシミュレーションツールとして、ますます採用されている。
本稿では,人間同士のインタラクションや信頼の最も重要な行動の一つに焦点をあて,LLMエージェントが人間の信頼行動をシミュレートできるかどうかを検討する。
- 参考スコア(独自算出の注目度): 75.69583811834073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) agents have been increasingly adopted as
simulation tools to model humans in applications such as social science.
However, one fundamental question remains: can LLM agents really simulate human
behaviors? In this paper, we focus on one of the most critical behaviors in
human interactions, trust, and aim to investigate whether or not LLM agents can
simulate human trust behaviors. We first find that LLM agents generally exhibit
trust behaviors, referred to as agent trust, under the framework of Trust
Games, which are widely recognized in behavioral economics. Then, we discover
that LLM agents can have high behavioral alignment with humans regarding trust
behaviors, indicating the feasibility to simulate human trust behaviors with
LLM agents. In addition, we probe into the biases in agent trust and the
differences in agent trust towards agents and humans. We also explore the
intrinsic properties of agent trust under conditions including advanced
reasoning strategies and external manipulations. We further offer important
implications for various scenarios where trust is paramount. Our study
represents a significant step in understanding the behaviors of LLM agents and
the LLM-human analogy.
- Abstract(参考訳): 大規模言語モデル(llm)エージェントは、社会科学などの応用において人間をモデル化するためのシミュレーションツールとしてますます採用されている。
LLMエージェントは本当に人間の行動をシミュレートできるか?
本稿では,人間同士のインタラクションや信頼の最も重要な行動の一つに焦点をあて,LLMエージェントが人間の信頼行動をシミュレートできるかどうかを検討する。
まず, LLMエージェントは一般に, 行動経済学において広く認知されている信頼ゲーム(Trust Games)の枠組みの下で, エージェント信頼と呼ばれる信頼行動を示す。
そして, LLMエージェントは信頼行動に関して人間と高い行動アライメントを持ち, LLMエージェントによる人間信頼行動のシミュレートの可能性を示す。
さらに,エージェント信頼のバイアスとエージェントと人間に対するエージェント信頼の差について検討した。
また,エージェント信頼の本質的性質を,高度な推論戦略や外部操作を含む条件下で検討する。
信頼が最重要であるさまざまなシナリオに対して、さらに重要な意味を提供する。
本研究は, LLMエージェントの挙動とLLM-ヒト類似性を理解するための重要なステップである。
関連論文リスト
- Can Machines Think Like Humans? A Behavioral Evaluation of LLM-Agents in Dictator Games [7.504095239018173]
LLM(Large Language Model)ベースのエージェントは、現実のタスクを担い、人間の社会と関わるようになっている。
本研究では,これらのAIエージェントの利他的行動に異なるペルソナと実験的フレーミングがどのような影響を及ぼすかを検討する。
これらのAIエージェントは、人為的なデータに基づいて訓練されているにもかかわらず、人間の決定を正確に予測することはできない。
論文 参考訳(メタデータ) (2024-10-28T17:47:41Z) - Exploring Prosocial Irrationality for LLM Agents: A Social Cognition View [21.341128731357415]
大規模言語モデル(LLM)は、人間のバイアスを頻繁に含んでいるデータのために幻覚に直面することが示されている。
幻覚特性を利用してLLMエージェントのソーシャルインテリジェンスを評価し,強化するオープンエンドマルチLLMエージェントフレームワークであるCogMirを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:13:33Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Open Models, Closed Minds? On Agents Capabilities in Mimicking Human Personalities through Open Large Language Models [4.742123770879715]
この研究は、オープンLLMのレンズを通して、NLPと人間の心理学の密接な関係を理解するための一歩である。
提案手法は,オープンLLMエージェントの本質的な性格特性を評価し,これらのエージェントが人格を模倣する程度を判断する。
論文 参考訳(メタデータ) (2024-01-13T16:41:40Z) - Towards Machines that Trust: AI Agents Learn to Trust in the Trust Game [11.788352764861369]
我々は,行動科学と脳科学の信頼を研究するための標準的な課題である$textittrust game$について理論的に分析する。
具体的には、強化学習を利用してAIエージェントを訓練し、このタスクの様々なパラメータ化の下で学習信頼を調査する。
提案したシミュレーション結果と相関する理論解析は,信頼ゲームにおける信頼の出現に関する数学的基礎を提供する。
論文 参考訳(メタデータ) (2023-12-20T09:32:07Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
大規模言語モデル(LLM)は、人間の振る舞いをシミュレートするエージェントとして用いられる。
本稿では, ベートーヴェン, クレオパトラ女王, ユリウス・カエサルなど, LLM に特定の人物として行動するように教えるキャラクタ-LLMを紹介する。
論文 参考訳(メタデータ) (2023-10-16T07:58:56Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
我々は、人間不合理性の確立されたモデルであるRational Inattention(RI)モデルを含む、より人間的なRLエージェントについて検討する。
RIRLは、相互情報を用いた認知情報処理のコストをモデル化する。
我々は、RIRLを用いることで、合理的な仮定の下で発見されたものと異なる、新しい平衡挙動の豊富なスペクトルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-18T20:54:00Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。