論文の概要: MEMORYLLM: Towards Self-Updatable Large Language Models
- arxiv url: http://arxiv.org/abs/2402.04624v1
- Date: Wed, 7 Feb 2024 07:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 16:42:33.426005
- Title: MEMORYLLM: Towards Self-Updatable Large Language Models
- Title(参考訳): MEMORYLLM: 自己更新可能な大規模言語モデルを目指して
- Authors: Yu Wang, Xiusi Chen, Jingbo Shang, Julian McAuley
- Abstract要約: MEMORYLLMは、テキスト知識を自己更新し、早期に注入された知識を記憶することができる。
このモデルは、我々のカスタム設計評価と長期コンテキストベンチマークによって検証された長期情報保持能力を示す。
- 参考スコア(独自算出の注目度): 52.99595594628542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing Large Language Models (LLMs) usually remain static after deployment,
which might make it hard to inject new knowledge into the model. We aim to
build models containing a considerable portion of self-updatable parameters,
enabling the model to integrate new knowledge effectively and efficiently. To
this end, we introduce MEMORYLLM, a model that comprises a transformer and a
fixed-size memory pool within the latent space of the transformer. MEMORYLLM
can self-update with text knowledge and memorize the knowledge injected
earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively
incorporate new knowledge, as evidenced by its performance on model editing
benchmarks. Meanwhile, the model exhibits long-term information retention
capacity, which is validated through our custom-designed evaluations and
long-context benchmarks. MEMORYLLM also shows operational integrity without any
sign of performance degradation even after nearly a million memory updates.
- Abstract(参考訳): 既存のLarge Language Models (LLM) は通常、デプロイ後に静的のままであり、モデルに新しい知識を注入するのは困難である。
我々は,自己回復可能なパラメータのかなりの部分を含むモデルを構築し,新しい知識を効果的かつ効率的に統合することを目指している。
そこで本研究では,変圧器の潜伏空間内に,変圧器と固定サイズのメモリプールを備えるモデルMEMORYLLMを紹介する。
MEMORYLLMは、テキスト知識を自己更新し、早期に注入された知識を記憶することができる。
評価の結果,モデル編集ベンチマークの性能が示すように,新しい知識を効果的に取り入れる能力が示された。
一方、このモデルは、我々のカスタム設計評価と長期コンテキストベンチマークによって検証される長期情報保持能力を示す。
MEMORYLLMは、100万近いメモリ更新後のパフォーマンス低下の兆候のない、運用上の整合性も示している。
関連論文リスト
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
MAC(Memory of Amortized Contexts)は、大規模言語モデルのための効率的かつ効果的なオンライン適応フレームワークである。
MACとMACを組み合わせれば,検索の高速化など,一般的な代替手段の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-03-07T08:34:57Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
大規模言語モデル(LLM)は、メモリとランタイムのコストが高いため、長い入力シーケンスを扱うのに苦労する。
本稿では,事前学習した(凍結した)注意に基づくLCMに再学習せずに結合可能な連想記憶モジュールを提案する。
CAMELoTと呼ばれるこのアーキテクチャは、128トークンの小さなコンテキストウィンドウでも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-21T01:00:17Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
CIL(Class-Incremental Learning)は、この要件を満たすために、限られたメモリサイズでモデルをトレーニングすることを目的としている。
モデルサイズを総予算にカウントし,メモリサイズに整合する手法を比較すると,保存モデルは常に機能しないことを示す。
本稿では,メモリ効率のよい拡張可能なMOdelのための MEMO という,シンプルで効果的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-05-26T08:24:01Z) - Training Language Models with Memory Augmentation [28.4608705738799]
本稿では,メモリ拡張による言語モデル学習のための新しいトレーニング手法を提案する。
当社のアプローチでは、バッチ内のサンプルをアクセス可能なメモリとして直接取り込むトレーニング目標を用いています。
従来のメモリ拡張アプローチよりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-05-25T11:37:29Z) - Mention Memory: incorporating textual knowledge into Transformers
through entity mention attention [21.361822569279003]
本稿では,大規模テキストコーパスの半パラメトリック表現を,事実知識の源泉としてトランスフォーマーモデルに統合することを提案する。
提案するモデル - TOME は内部メモリ層を通じて情報にアクセスするトランスフォーマーであり、入力通路に記述された各エンティティが参照メモリに付随する。
ウィキペディアが言及した1億5000万のメモリを使った実験では、TOMEはいくつかのオープンドメインの知識集約タスクで高いパフォーマンスを達成している。
論文 参考訳(メタデータ) (2021-10-12T17:19:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。