論文の概要: Online Adaptation of Language Models with a Memory of Amortized Contexts
- arxiv url: http://arxiv.org/abs/2403.04317v2
- Date: Mon, 04 Nov 2024 13:02:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:52.655351
- Title: Online Adaptation of Language Models with a Memory of Amortized Contexts
- Title(参考訳): 記憶的文脈を記憶した言語モデルのオンライン適応
- Authors: Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, Jonathan Richard Schwarz,
- Abstract要約: MAC(Memory of Amortized Contexts)は、大規模言語モデルのための効率的かつ効果的なオンライン適応フレームワークである。
MACとMACを組み合わせれば,検索の高速化など,一般的な代替手段の性能が向上することを示す。
- 参考スコア(独自算出の注目度): 82.02369596879817
- License:
- Abstract: Due to the rapid generation and dissemination of information, large language models (LLMs) quickly run out of date despite enormous development costs. To address the crucial need to keep models updated, online learning has emerged as a critical tool when utilizing LLMs for real-world applications. However, given the ever-expanding corpus of unseen documents and the large parameter space of modern LLMs, efficient adaptation is essential. To address these challenges, we propose Memory of Amortized Contexts (MAC), an efficient and effective online adaptation framework for LLMs with strong knowledge retention. We propose a feature extraction and memory-augmentation approach to compress and extract information from new documents into compact modulations stored in a memory bank. When answering questions, our model attends to and extracts relevant knowledge from this memory bank. To learn informative modulations in an efficient manner, we utilize amortization-based meta-learning, which substitutes an otherwise required optimization process with a single forward pass of the encoder. Subsequently, we learn to choose from and aggregate selected documents into a single modulation by conditioning on the question, allowing us to adapt a frozen language model during test time without requiring further gradient updates. Our experiment demonstrates the superiority of MAC in multiple aspects, including online adaptation performance, time, and memory efficiency. In addition, we show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations (RAGs). Code is available at: https://github.com/jihoontack/MAC.
- Abstract(参考訳): 情報の発生と普及により、膨大な開発コストにもかかわらず、大規模言語モデル(LLM)は急速に時代遅れになった。
モデルを更新し続けるための重要なニーズに対処するため、オンライン学習は現実のアプリケーションにLLMを使用する上で重要なツールとして登場した。
しかし、未確認文書の絶え間ないコーパスと現代のLLMの大きなパラメータ空間を考えると、効率的な適応が不可欠である。
これらの課題に対処するために,強力な知識保持を有するLLMのための効率的かつ効果的なオンライン適応フレームワークであるMAC(Memory of Amortized Contexts)を提案する。
本稿では,新しい文書から情報を圧縮・抽出する特徴抽出とメモリ拡張手法を提案する。
質問に答えると、私たちのモデルは、この記憶バンクから関連する知識を抽出します。
情報変調を効率よく学習するために,アモータイズに基づくメタラーニングを用いてエンコーダの1つのフォワードパスに置き換える。
その後、選択した文書の中から、質問に応じて単一の変調に集約することを学び、さらなる勾配更新を必要とせずに、テスト期間中に凍結した言語モデルを適応させることができる。
実験では,オンライン適応性能,時間,メモリ効率など,MACの複数の面での優位性を実証した。
さらに、MACとMACを組み合わせることで、検索拡張世代 (RAGs) のような一般的な代替手段の性能を向上できることを示す。
コードは、https://github.com/jihoontack/MAC.comで入手できる。
関連論文リスト
- CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
コードブック機能とスパースオートエンコーダ(SAEs)を用いた新しいアンラーニング手法を提案する。
ボトルネックを利用して、アクティベーション空間を分解し、情報の流れを規制することにより、モデルの性能を無関係なデータに保ちながら、ターゲットとなる情報を効率的に解き放つ。
論文 参考訳(メタデータ) (2024-10-08T10:26:22Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,知識能力を向上させる新しい手法であるMemLLMを紹介する。
実験の結果,MemLLMは言語モデリング全般,特に言語モデルにおいて,性能と解釈可能性を向上させることが示唆された。
私たちは MemLLM を,メモリ拡張による LLM の基盤化と現実化に向けた重要なステップと捉えています。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
大規模言語モデル(LLM)は、メモリとランタイムのコストが高いため、長い入力シーケンスを扱うのに苦労する。
本稿では,事前学習した(凍結した)注意に基づくLCMに再学習せずに結合可能な連想記憶モジュールを提案する。
CAMELoTと呼ばれるこのアーキテクチャは、128トークンの小さなコンテキストウィンドウでも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-21T01:00:17Z) - Anchor-based Large Language Models [33.86392289481657]
本研究ではアンカーベースの自己アテンションネットワーク(AnSAN)とアンカーベースの推論戦略を利用するアンカーベースのLSM(AnLLM)を紹介する。
AnLLMも同様の精度を維持し、最大99%のキー/バリューキャッシュの削減、最大3.5倍の高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-12T12:48:02Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Memory-Efficient Continual Learning Object Segmentation for Long Video [7.9190306016374485]
本稿では,オンラインVOS手法のメモリ要求を低減し,長ビデオのモデリング精度と一般化を向上する2つの新しい手法を提案する。
事前学習した知識を保存するための継続的学習技術の成功に動機づけられた、Gated-Regularizer Continual Learning (GRCL)とRestruction-based Memory Selection Continual Learning (RMSCL)を提案する。
実験結果から,提案手法はオンラインVOSモデルの性能を8%以上向上し,長期画像データセットのロバスト性の向上を図っている。
論文 参考訳(メタデータ) (2023-09-26T21:22:03Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
大規模言語モデル(LLM)は、大量の世界の知識を符号化する。
我々はLLMを検索エンジンを用いて大規模ウェブで拡張することを検討する。
ウェブ上に拡張されたLLM UNIWEBを提案する。これは16の知識集約的なタスクに対して、統一されたテキスト・テキスト・フォーマットで訓練される。
論文 参考訳(メタデータ) (2023-05-18T14:20:32Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - Continual Variational Autoencoder Learning via Online Cooperative
Memorization [11.540150938141034]
変分オートエンコーダ(VAE)は連続的な学習分類タスクでうまく使われている。
しかし、連続学習で学んだクラスやデータベースに対応する仕様で画像を生成する能力はよく理解されていない。
我々は、CLを動的最適輸送問題として定式化する新しい理論フレームワークを開発する。
次に,新しいメモリバッファリング手法,すなわちオンライン協調記憶(OCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T18:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。