LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views
- URL: http://arxiv.org/abs/2402.04644v2
- Date: Tue, 18 Jun 2024 21:56:54 GMT
- Title: LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views
- Authors: Yuji Roh, Qingyun Liu, Huan Gui, Zhe Yuan, Yujin Tang, Steven Euijong Whang, Liang Liu, Shuchao Bi, Lichan Hong, Ed H. Chi, Zhe Zhao,
- Abstract summary: Fine-tuning is used to leverage the power of pre-trained foundation models in new downstream tasks.
Recent studies have observed challenges in the generalization of fine-tuned models to unseen distributions.
We propose a novel generalizable fine-tuning method LEVI, where the pre-trained model is adaptively ensembled layer-wise with a small task-specific model.
- Score: 28.081794908107604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning is becoming widely used for leveraging the power of pre-trained foundation models in new downstream tasks. While there are many successes of fine-tuning on various tasks, recent studies have observed challenges in the generalization of fine-tuned models to unseen distributions (i.e., out-of-distribution; OOD). To improve OOD generalization, some previous studies identify the limitations of fine-tuning data and regulate fine-tuning to preserve the general representation learned from pre-training data. However, potential limitations in the pre-training data and models are often ignored. In this paper, we contend that overly relying on the pre-trained representation may hinder fine-tuning from learning essential representations for downstream tasks and thus hurt its OOD generalization. It can be especially catastrophic when new tasks are from different (sub)domains compared to pre-training data. To address the issues in both pre-training and fine-tuning data, we propose a novel generalizable fine-tuning method LEVI (Layer-wise Ensemble of different VIews), where the pre-trained model is adaptively ensembled layer-wise with a small task-specific model, while preserving its efficiencies. By combining two complementing models, LEVI effectively suppresses problematic features in both the fine-tuning data and pre-trained model and preserves useful features for new tasks. Broad experiments with large language and vision models show that LEVI greatly improves fine-tuning generalization via emphasizing different views from fine-tuning data and pre-trained features.
Related papers
- Feature Protection For Out-of-distribution Generalization [24.072876186625855]
We show that protecting pre-trained features leads to a fine-tuned model more robust to generalization.
We show that protecting pre-trained features leads to a fine-tuned model more robust to OOD generalization.
arXiv Detail & Related papers (2024-05-25T03:00:06Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
We study the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods.
Our analysis uncovers that LoRA fine-tuning consistently exhibits significantly better OOD generalization performance than full fine-tuning across various scenarios.
arXiv Detail & Related papers (2022-10-10T16:07:24Z) - Two-Stage Fine-Tuning: A Novel Strategy for Learning Class-Imbalanced
Data [11.66734752179563]
Classification on long-tailed distributed data is a challenging problem.
Learning on tail classes is especially challenging for the fine-tuning when transferring a pretrained model to a downstream task.
We propose a two-stage fine-tuning: we first fine-tune the final layer of the pretrained model with class-balanced reweighting loss, and then we perform the standard fine-tuning.
arXiv Detail & Related papers (2022-07-22T03:39:51Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.