論文の概要: Source Identification in Abstractive Summarization
- arxiv url: http://arxiv.org/abs/2402.04677v1
- Date: Wed, 7 Feb 2024 09:09:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 16:03:10.247177
- Title: Source Identification in Abstractive Summarization
- Title(参考訳): 抽象要約におけるソース識別
- Authors: Yoshi Suhara and Dimitris Alikaniotis
- Abstract要約: 生成された要約文に必須情報を含む入力文を$textitsource文として定義し、ソース文を解析して抽象的な要約がどのように作られるかを研究する。
我々は,複数の手法を比較し,タスクの強いベースラインを確立するために,自動ソース文検出を定式化する。
実験結果から, パープレキシティに基づく手法は, 比較的抽象的条件下では良好に動作し, 類似性に基づく手法は比較的抽出的条件下では頑健であることがわかった。
- 参考スコア(独自算出の注目度): 0.8883733362171033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural abstractive summarization models make summaries in an end-to-end
manner, and little is known about how the source information is actually
converted into summaries. In this paper, we define input sentences that contain
essential information in the generated summary as $\textit{source sentences}$
and study how abstractive summaries are made by analyzing the source sentences.
To this end, we annotate source sentences for reference summaries and system
summaries generated by PEGASUS on document-summary pairs sampled from the
CNN/DailyMail and XSum datasets. We also formulate automatic source sentence
detection and compare multiple methods to establish a strong baseline for the
task. Experimental results show that the perplexity-based method performs well
in highly abstractive settings, while similarity-based methods perform robustly
in relatively extractive settings. Our code and data are available at
https://github.com/suhara/sourcesum.
- Abstract(参考訳): ニューラルネットワークの抽象的要約モデルでは、要約をエンドツーエンドで作成し、ソース情報を実際に要約に変換する方法についてはほとんど分かっていない。
本稿では、生成された要約に必須情報を含む入力文を$\textit{source sentences}$と定義し、ソース文を解析して抽象的な要約がどのように作られるかを検討する。
この目的のために,cnn/dailymail と xsum データセットからサンプリングされた文書-要約ペアに対して,pegasus が生成した参照要約とシステム要約のソース文に注釈を付ける。
また、複数の手法を比較して、タスクの強力なベースラインを確立する。
実験の結果, パープレキシティに基づく手法は高度に抽象的な設定で良好に動作し, 類似性に基づく手法は比較的抽出的な設定でロバストに機能することがわかった。
コードとデータはhttps://github.com/suhara/sourcesum.comから入手できます。
関連論文リスト
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - AugSumm: towards generalizable speech summarization using synthetic
labels from large language model [61.73741195292997]
抽象音声要約(SSUM)は、音声から人間に似た要約を生成することを目的としている。
従来のSSUMモデルは、主に、人間による注釈付き決定論的要約(英語版)を用いて訓練され、評価されている。
AugSummは,人間のアノテータが拡張要約を生成するためのプロキシとして,大規模言語モデル(LLM)を利用する手法である。
論文 参考訳(メタデータ) (2024-01-10T18:39:46Z) - On Context Utilization in Summarization with Large Language Models [83.84459732796302]
大きな言語モデル(LLM)は抽象的な要約タスクに優れ、流動的で関連する要約を提供する。
最近の進歩は、100kトークンを超える長期入力コンテキストを扱う能力を拡張している。
要約における文脈利用と位置バイアスに関する最初の総合的研究を行う。
論文 参考訳(メタデータ) (2023-10-16T16:45:12Z) - Salience Allocation as Guidance for Abstractive Summarization [61.31826412150143]
本稿では, サリエンセ・サリエンス・ガイダンス(SEASON, SaliencE Allocation as Guidance for Abstractive SummarizatiON)を用いた新しい要約手法を提案する。
SEASONは、サリエンス予測の割り当てを利用して抽象的な要約を導き、異なる抽象性のある記事に順応する。
論文 参考訳(メタデータ) (2022-10-22T02:13:44Z) - A Survey on Neural Abstractive Summarization Methods and Factual
Consistency of Summarization [18.763290930749235]
要約は、サブセット(要約)を作成するために、テキストデータの集合を計算的に短縮する過程である
既存の要約法は、抽出法と抽象法という2つのタイプに大別できる。
抽出要約器は、ソース文書からテキストスニペットを明示的に選択し、抽象要約器は、ソースで広く普及している最も健全な概念を伝えるために、新しいテキストスニペットを生成する。
論文 参考訳(メタデータ) (2022-04-20T14:56:36Z) - Reinforcing Semantic-Symmetry for Document Summarization [15.113768658584979]
文書要約は、長い文書を詳細な情報と正確な意味記述を備えた短いバージョンに凝縮する。
本稿では,文書要約のための新しいtextbfreinforcing stextbfemantic-textbfsymmetric Learning textbfmodelを提案する。
CNN/Daily MailとBigPatentの2つの大胆なベンチマークデータセットに対して、一連の実験が行われた。
論文 参考訳(メタデータ) (2021-12-14T17:41:37Z) - Topic Modeling Based Extractive Text Summarization [0.0]
本稿では,潜在トピックに基づいて内容をクラスタリングすることで,テキストを要約する新しい手法を提案する。
我々は、テキスト要約へのアプローチにおいて、より使用量が少なく挑戦的なWikiHowデータセットを活用している。
論文 参考訳(メタデータ) (2021-06-29T12:28:19Z) - Automated News Summarization Using Transformers [4.932130498861987]
我々は,テキスト要約のためのトランスフォーマーアーキテクチャに基づく事前学習モデルについて,包括的に比較する。
分析と比較のために,要約や人為的な要約に使用できるテキストデータを含むBBCニュースデータセットを用いた。
論文 参考訳(メタデータ) (2021-04-23T04:22:33Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z) - At Which Level Should We Extract? An Empirical Analysis on Extractive
Document Summarization [110.54963847339775]
本研究は,全文を抽出する際,不必要な問題や冗長性が存在することを示す。
選挙区解析木に基づくサブセグメント単位の抽出を提案する。
論文 参考訳(メタデータ) (2020-04-06T13:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。