論文の概要: A Survey on Neural Abstractive Summarization Methods and Factual
Consistency of Summarization
- arxiv url: http://arxiv.org/abs/2204.09519v1
- Date: Wed, 20 Apr 2022 14:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 14:52:28.685336
- Title: A Survey on Neural Abstractive Summarization Methods and Factual
Consistency of Summarization
- Title(参考訳): 神経抽象要約法と要約の事実整合性に関する調査研究
- Authors: Meng Cao
- Abstract要約: 要約は、サブセット(要約)を作成するために、テキストデータの集合を計算的に短縮する過程である
既存の要約法は、抽出法と抽象法という2つのタイプに大別できる。
抽出要約器は、ソース文書からテキストスニペットを明示的に選択し、抽象要約器は、ソースで広く普及している最も健全な概念を伝えるために、新しいテキストスニペットを生成する。
- 参考スコア(独自算出の注目度): 18.763290930749235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic summarization is the process of shortening a set of textual data
computationally, to create a subset (a summary) that represents the most
important pieces of information in the original text. Existing summarization
methods can be roughly divided into two types: extractive and abstractive. An
extractive summarizer explicitly selects text snippets (words, phrases,
sentences, etc.) from the source document, while an abstractive summarizer
generates novel text snippets to convey the most salient concepts prevalent in
the source.
- Abstract(参考訳): 自動要約(automatic summarization)は、テキストデータの集合を計算的に短縮し、元のテキストで最も重要な情報のサブセット(要約)を作成するプロセスである。
既存の要約方法は、抽出と抽象の2つのタイプに大別できる。
抽出要約器は、ソース文書からテキストスニペット(単語、句、文等)を明示的に選択し、抽象要約器は、ソースで広く普及している最も健全な概念を伝える新規テキストスニペットを生成する。
関連論文リスト
- Source Identification in Abstractive Summarization [0.8883733362171033]
生成された要約文に必須情報を含む入力文を$textitsource文として定義し、ソース文を解析して抽象的な要約がどのように作られるかを研究する。
我々は,複数の手法を比較し,タスクの強いベースラインを確立するために,自動ソース文検出を定式化する。
実験結果から, パープレキシティに基づく手法は, 比較的抽象的条件下では良好に動作し, 類似性に基づく手法は比較的抽出的条件下では頑健であることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:09:09Z) - Salience Allocation as Guidance for Abstractive Summarization [61.31826412150143]
本稿では, サリエンセ・サリエンス・ガイダンス(SEASON, SaliencE Allocation as Guidance for Abstractive SummarizatiON)を用いた新しい要約手法を提案する。
SEASONは、サリエンス予測の割り当てを利用して抽象的な要約を導き、異なる抽象性のある記事に順応する。
論文 参考訳(メタデータ) (2022-10-22T02:13:44Z) - A General Contextualized Rewriting Framework for Text Summarization [15.311467109946571]
抽出文は比較的焦点が当てられているが、背景知識や談話の文脈が失われる可能性がある。
コンテントベースのアドレッシングによって抽出文を識別し、グループタグアライメントを施したSeq2seqとしてコンテクスト化された書き直しを形式化する。
その結果,本手法は強化学習を必要とせず,非コンテクスチュアライズされた書き換えシステムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-13T03:55:57Z) - Topic Modeling Based Extractive Text Summarization [0.0]
本稿では,潜在トピックに基づいて内容をクラスタリングすることで,テキストを要約する新しい手法を提案する。
我々は、テキスト要約へのアプローチにおいて、より使用量が少なく挑戦的なWikiHowデータセットを活用している。
論文 参考訳(メタデータ) (2021-06-29T12:28:19Z) - Automated News Summarization Using Transformers [4.932130498861987]
我々は,テキスト要約のためのトランスフォーマーアーキテクチャに基づく事前学習モデルについて,包括的に比較する。
分析と比較のために,要約や人為的な要約に使用できるテキストデータを含むBBCニュースデータセットを用いた。
論文 参考訳(メタデータ) (2021-04-23T04:22:33Z) - Extractive Summarization of Call Transcripts [77.96603959765577]
本稿では, 話題のモデル化と文選択と句読点の復元を併用した母語的手法を提案する。
大規模なテスト,評価,比較により,この要約法の有効性が証明された。
論文 参考訳(メタデータ) (2021-03-19T02:40:59Z) - Better Highlighting: Creating Sub-Sentence Summary Highlights [40.46639471959677]
本稿では,混乱を避けるために,自己完結型ハイライトを生成する新しい手法を提案する。
提案手法は, 決定点過程と文脈表現を組み合わせ, 部分文セグメントの最適集合を同定する。
本手法の柔軟性とモデリング能力を示すため,要約データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2020-10-20T18:57:42Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - TRIE: End-to-End Text Reading and Information Extraction for Document
Understanding [56.1416883796342]
本稿では,統合されたエンドツーエンドのテキスト読解と情報抽出ネットワークを提案する。
テキスト読解のマルチモーダル視覚的特徴とテキスト的特徴は、情報抽出のために融合される。
提案手法は, 精度と効率の両面において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-05-27T01:47:26Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
本稿では,物語の基盤となる構造を一般教師なし・教師付き抽出要約モデルに明示的に組み込むことを提案する。
重要な物語イベント(転回点)の観点で物語構造を定式化し、脚本を要約するために潜伏状態として扱う。
シーンレベルの要約ラベルを付加したテレビ画面のCSIコーパスの実験結果から,潜角点がCSIエピソードの重要な側面と相関していることが判明した。
論文 参考訳(メタデータ) (2020-04-27T11:54:19Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。