Decoherence rate in random Lindblad dynamics
- URL: http://arxiv.org/abs/2402.04705v3
- Date: Fri, 7 Jun 2024 03:05:06 GMT
- Title: Decoherence rate in random Lindblad dynamics
- Authors: Yifeng Yang, Zhenyu Xu, Adolfo del Campo,
- Abstract summary: We study the dynamics of open chaotic quantum systems governed by random Lindblad operators.
Our work identifies primary features of decoherence in dissipative quantum chaos.
- Score: 4.535465727794938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open quantum systems undergo decoherence, which is responsible for the transition from quantum to classical behavior. The time scale in which decoherence takes place can be analyzed using upper limits to its rate. We examine the dynamics of open chaotic quantum systems governed by random Lindblad operators sourced from Gaussian and Ginibre ensembles with Wigner-Dyson symmetry classes. In these systems, the ensemble-averaged purity decays monotonically as a function of time. This decay is governed by the decoherence rate, which is upper-bounded by the dimension of their Hilbert space and is independent of the ensemble symmetry. These findings hold upon mixing different ensembles, indicating the universal character of the decoherence rate limit. Moreover, our findings reveal that open chaotic quantum systems governed by random Lindbladians tend to exhibit the most rapid decoherence, regardless of the initial state. This phenomenon is associated with the concentration of the decoherence rate near its upper bound. Our work identifies primary features of decoherence in dissipative quantum chaos, with applications ranging from quantum foundations to high-energy physics and quantum technologies.
Related papers
- A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Magnetization in a non-equilibrium quantum spin system [0.0]
We show that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of a critical two-level open quantum system.
The NESS is identical to the coalescent state of the effective non-Hermitian Hamiltonian.
This discovery paves the way for a better understanding of the long-term dynamics of critical open quantum systems.
arXiv Detail & Related papers (2024-06-01T02:16:24Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Hilbert Space Fragmentation in Open Quantum Systems [0.7412445894287709]
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems.
We find that it can stabilize highly entangled steady states.
arXiv Detail & Related papers (2023-05-05T18:00:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.