Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems
- URL: http://arxiv.org/abs/2406.07616v2
- Date: Tue, 24 Dec 2024 08:50:13 GMT
- Title: Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems
- Authors: David VillaseƱor, Lea F. Santos, Pablo Barberis-Blostein,
- Abstract summary: In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic.
We show that the onset of cubic level repulsion in the open quantum model is not always related with chaotic structures in the classical limit.
- Score: 0.0
- License:
- Abstract: Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems. Advances in this direction were brought by the Grobe-Haake-Sommers (GHS) conjecture, which connects chaos in a dissipative classical system with cubic repulsion of the eigenvalues of the quantum counterpart and regularity with linear level repulsion. Here, we show that the GHS conjecture does not hold for the open Dicke model, which is a spin-boson model of experimental interest. We show that the onset of cubic level repulsion in the open quantum model is not always related with chaotic structures in the classical limit. This result challenges the universality of the GHS conjecture and raises the question of what is the source of spectral correlations in open quantum systems.
Related papers
- Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We find that bath dynamical decoupling works if and only if the kick is ergodic.
We study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Decoherence rate in random Lindblad dynamics [4.535465727794938]
We study the dynamics of open chaotic quantum systems governed by random Lindblad operators.
Our work identifies primary features of decoherence in dissipative quantum chaos.
arXiv Detail & Related papers (2024-02-07T09:50:00Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Impact of chaos on precursors of quantum criticality [0.0]
Excited-state quantum phase transitions (ESQPTs) are critical phenomena that generate singularities in the spectrum of quantum systems.
We show that finite-size of ESQPTs shrink as chaos increases due to the disturbance of the system.
arXiv Detail & Related papers (2021-12-06T20:08:07Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Hybrid quantum-classical chaotic NEMS [1.224954637705144]
We present an exactly solvable model of a hybrid quantum-classical system of a center spin (quantum spin) coupled to a nanocantilever (classical)
The main problem we focus in this paper is whether the classical chaos may induce chaotic effects in the quantum spin dynamics or not.
arXiv Detail & Related papers (2020-08-19T15:46:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.