論文の概要: Shadowheart SGD: Distributed Asynchronous SGD with Optimal Time Complexity Under Arbitrary Computation and Communication Heterogeneity
- arxiv url: http://arxiv.org/abs/2402.04785v2
- Date: Sat, 02 Nov 2024 15:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:26:09.025317
- Title: Shadowheart SGD: Distributed Asynchronous SGD with Optimal Time Complexity Under Arbitrary Computation and Communication Heterogeneity
- Title(参考訳): Shadowheart SGD:任意計算と通信ヘテロジニティの下での最適時間複雑度を持つ分散非同期SGD
- Authors: Alexander Tyurin, Marta Pozzi, Ivan Ilin, Peter Richtárik,
- Abstract要約: 我々は,従来の集中型手法の時間的複雑さを確実に改善する新しい手法であるShadowheart SGDを開発した。
また、サーバからワーカーへのブロードキャストが無視できない双方向設定も検討し、対応する方法を開発した。
- 参考スコア(独自算出の注目度): 85.92481138826949
- License:
- Abstract: We consider nonconvex stochastic optimization problems in the asynchronous centralized distributed setup where the communication times from workers to a server can not be ignored, and the computation and communication times are potentially different for all workers. Using an unbiassed compression technique, we develop a new method-Shadowheart SGD-that provably improves the time complexities of all previous centralized methods. Moreover, we show that the time complexity of Shadowheart SGD is optimal in the family of centralized methods with compressed communication. We also consider the bidirectional setup, where broadcasting from the server to the workers is non-negligible, and develop a corresponding method.
- Abstract(参考訳): 我々は、ワーカからサーバへの通信時間を無視できない非同期集中分散セットアップにおいて、非凸確率最適化の問題を考える。
バイアスのない圧縮手法を用いて,従来の集中型手法の時間複雑性を確実に向上させる新しい手法であるShadowheart SGDを開発した。
さらに,Shadowheart SGDの時間的複雑さは,圧縮通信を用いた集中型手法のファミリにおいて最適であることを示す。
また、サーバからワーカーへのブロードキャストが無視できない双方向設定も検討し、対応する方法を開発した。
関連論文リスト
- Federated Contextual Cascading Bandits with Asynchronous Communication
and Heterogeneous Users [95.77678166036561]
繊細な通信プロトコルを用いたUPB型アルゴリズムを提案する。
同期フレームワークで達成されたものと同等のサブ線形後悔境界を与えます。
合成および実世界のデータセットに関する実証評価は、後悔と通信コストの観点から、我々のアルゴリズムの優れた性能を検証する。
論文 参考訳(メタデータ) (2024-02-26T05:31:14Z) - Asynchronous SGD on Graphs: a Unified Framework for Asynchronous
Decentralized and Federated Optimization [13.119144971868632]
本稿では,グラフ上での非同期SGD(AGRAF SGD)について紹介する。
従来の分散非同期計算処理よりも遥かに穏やかな仮定の下で収束率を提供する。
論文 参考訳(メタデータ) (2023-11-01T11:58:16Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
有効指標としてAUPRC(Area Under Precision-Recall)を導入した。
サーバーレスのマルチパーティ共同トレーニングは、サーバーノードのボトルネックを避けることで通信コストを削減できる。
本稿では,AUPRCを直接最適化する ServerLess biAsed sTochastic gradiEnt (SLATE) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-06T06:51:32Z) - $\textbf{A}^2\textbf{CiD}^2$: Accelerating Asynchronous Communication in
Decentralized Deep Learning [0.0]
このアルゴリズムは、$textbfA2textbfCiD2$という連続的な局所運動量のおかげで動作する。
我々の理論解析は、以前の非同期分散ベースラインと比較して加速速度を証明している。
我々は、最大64の非同期ワーカーを使用して、ImageNetデータセットに一貫した改善を示す。
論文 参考訳(メタデータ) (2023-06-14T06:52:07Z) - Locally Asynchronous Stochastic Gradient Descent for Decentralised Deep
Learning [0.0]
Local Asynchronous SGD (LASGD) は、モデル同期にAll Reduceに依存する非同期分散アルゴリズムである。
ImageNetデータセット上の画像分類タスクにおいて、LASGDの性能を実証的に検証する。
論文 参考訳(メタデータ) (2022-03-24T14:25:15Z) - Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD
for Communication Efficient Nonconvex Distributed Learning [58.79085525115987]
ローカル手法は通信時間を短縮する有望なアプローチの1つである。
局所的データセットが局所的損失の滑らかさよりも小さい場合,通信の複雑さは非局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-12T15:12:17Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
分散最適化手法は、中央コーディネータを使わずに、機械学習モデルのデバイス上でのトレーニングを可能にする。
ランダム化圧縮演算子を適用し,通信ボトルネックに対処する新しいランダム化一階法を提案する。
本手法は,ベースラインに比べて通信数の増加を伴わずに問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-11-03T13:35:53Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z) - Advances in Asynchronous Parallel and Distributed Optimization [11.438194383787604]
非同期メソッドは最適化変数の一貫性のあるビューを維持するためにすべてのプロセッサを必要としない。
それらはストラグラー(遅いノード)や信頼できない通信リンクのような問題に敏感ではない。
本稿では,非同期最適化手法の設計と解析における最近の進歩について概説する。
論文 参考訳(メタデータ) (2020-06-24T16:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。