Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks
- URL: http://arxiv.org/abs/2307.08013v2
- Date: Fri, 20 Oct 2023 13:22:00 GMT
- Title: Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks
- Authors: Haobo Song, Soumajit Majumder, Tao Lin
- Abstract summary: Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models.
We revisit the line of implicit models and trace them back to the original weight-tied models.
Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants.
- Score: 4.872984658007499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit models such as Deep Equilibrium Models (DEQs) have garnered
significant attention in the community for their ability to train infinite
layer models with elegant solution-finding procedures and constant memory
footprint. However, despite several attempts, these methods are heavily
constrained by model inefficiency and optimization instability. Furthermore,
fair benchmarking across relevant methods for vision tasks is missing. In this
work, we revisit the line of implicit models and trace them back to the
original weight-tied models. Surprisingly, we observe that weight-tied models
are more effective, stable, as well as efficient on vision tasks, compared to
the DEQ variants. Through the lens of these simple-yet-clean weight-tied
models, we further study the fundamental limits in the model capacity of such
models and propose the use of distinct sparse masks to improve the model
capacity. Finally, for practitioners, we offer design guidelines regarding the
depth, width, and sparsity selection for weight-tied models, and demonstrate
the generalizability of our insights to other learning paradigms.
Related papers
- Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Model Stock: All we need is just a few fine-tuned models [34.449901046895185]
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance.
We employ significantly fewer models to achieve final weights yet yield superior accuracy.
We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures.
arXiv Detail & Related papers (2024-03-28T15:57:20Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.