On Efficient Language and Vision Assistants for Visually-Situated Natural Language Understanding: What Matters in Reading and Reasoning
- URL: http://arxiv.org/abs/2406.11823v2
- Date: Sun, 06 Oct 2024 22:42:47 GMT
- Title: On Efficient Language and Vision Assistants for Visually-Situated Natural Language Understanding: What Matters in Reading and Reasoning
- Authors: Geewook Kim, Minjoon Seo,
- Abstract summary: Recent advancements in language and vision assistants have showcased impressive capabilities but suffer from a lack of transparency.
Open-source models handle general image tasks effectively, but face challenges with the high computational demands of complex visually-situated text understanding.
This study aims to redefine the design of vision-language models by identifying key components and creating efficient models with constrained inference costs.
- Score: 33.89483627891117
- License:
- Abstract: Recent advancements in language and vision assistants have showcased impressive capabilities but suffer from a lack of transparency, limiting broader research and reproducibility. While open-source models handle general image tasks effectively, they face challenges with the high computational demands of complex visually-situated text understanding. Such tasks often require increased token inputs and large vision modules to harness high-resolution information. Striking a balance between model size and data importance remains an open question. This study aims to redefine the design of vision-language models by identifying key components and creating efficient models with constrained inference costs. By strategically formulating datasets, optimizing vision modules, and enhancing supervision techniques, we achieve significant improvements in inference throughput while maintaining high performance. Extensive experiments across models ranging from 160M to 13B parameters offer insights into model optimization. We will fully open-source our codebase, models, and datasets at https://github.com/naver-ai/elva.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
SIMA is a framework that enhances visual and language modality alignment through self-improvement.
It employs an in-context self-critic mechanism to select response pairs for preference tuning.
We demonstrate that SIMA achieves superior modality alignment, outperforming previous approaches.
arXiv Detail & Related papers (2024-05-24T23:09:27Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Efficiency-oriented approaches for self-supervised speech representation
learning [1.860144985630098]
Self-supervised learning enables the training of large neural models without the need for large, labeled datasets.
It has been generating breakthroughs in several fields, including computer vision, natural language processing, biology, and speech.
Despite current efforts, more work could be done to address high computational costs in self-supervised representation learning.
arXiv Detail & Related papers (2023-12-18T12:32:42Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z) - Efficient Deep Learning: A Survey on Making Deep Learning Models
Smaller, Faster, and Better [0.0]
With the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have increased significantly.
We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency.
We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support.
arXiv Detail & Related papers (2021-06-16T17:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.