論文の概要: AlphaFold Meets Flow Matching for Generating Protein Ensembles
- arxiv url: http://arxiv.org/abs/2402.04845v2
- Date: Mon, 2 Sep 2024 22:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:43:36.898258
- Title: AlphaFold Meets Flow Matching for Generating Protein Ensembles
- Title(参考訳): AlphaFoldがタンパク質アンサンブル生成のためのフローマッチングを発表
- Authors: Bowen Jing, Bonnie Berger, Tommi Jaakkola,
- Abstract要約: 本研究では,タンパク質のコンフォメーション・ランドスケープを学習・サンプリングするためのフローベース生成モデリング手法を開発した。
提案手法はAlphaFoldとMSAサブサンプリングと比較して精度と多様性の組合せが優れている。
本手法は,MD軌道の再現よりも高速な壁面収束により,静的なPDB構造を多様化することができる。
- 参考スコア(独自算出の注目度): 11.1639408863378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The biological functions of proteins often depend on dynamic structural ensembles. In this work, we develop a flow-based generative modeling approach for learning and sampling the conformational landscapes of proteins. We repurpose highly accurate single-state predictors such as AlphaFold and ESMFold and fine-tune them under a custom flow matching framework to obtain sequence-conditoned generative models of protein structure called AlphaFlow and ESMFlow. When trained and evaluated on the PDB, our method provides a superior combination of precision and diversity compared to AlphaFold with MSA subsampling. When further trained on ensembles from all-atom MD, our method accurately captures conformational flexibility, positional distributions, and higher-order ensemble observables for unseen proteins. Moreover, our method can diversify a static PDB structure with faster wall-clock convergence to certain equilibrium properties than replicate MD trajectories, demonstrating its potential as a proxy for expensive physics-based simulations. Code is available at https://github.com/bjing2016/alphaflow.
- Abstract(参考訳): タンパク質の生物学的機能はしばしば動的構造的アンサンブルに依存する。
本研究では,タンパク質のコンフォメーション・ランドスケープを学習・サンプリングするためのフローベース生成モデリング手法を開発する。
我々は,AlphaFold や ESMFold のような高精度な単一状態予測器を再利用し,それらをカスタムフローマッチングフレームワークで微調整し,AlphaFlow や ESMFlow と呼ばれるタンパク質構造のシーケンシャルコンディトン生成モデルを得る。
PDBをトレーニングし評価すると,本手法はAlphaFoldとMSAサブサンプリングと比較して精度と多様性の優れた組み合わせを提供する。
本手法は全原子MDからのアンサンブルのさらなる訓練を行うと, コンフォメーションの柔軟性, 位置分布, および未知タンパク質の高次アンサンブル観測値を正確に把握する。
さらに,提案手法は,MD軌道の再現よりも高速な壁面収束による静的PDB構造を多様化し,高コストな物理シミュレーションのプロキシとしての可能性を示す。
コードはhttps://github.com/bjing2016/alphaflow.comで公開されている。
関連論文リスト
- P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching [8.620021796568087]
P2DFlowはSE(3)フローマッチングに基づく生成モデルであり、タンパク質の構造的アンサンブルを予測する。
ATLASのMDデータセットでトレーニングと評価を行うと、P2DFlowは他のベースラインモデルよりも優れている。
タンパク質分子シミュレーションの潜在的プロキシ剤として、P2DFlowによって生成された高品質なアンサンブルは、様々なシナリオでタンパク質の機能を理解するのに大いに役立つ。
論文 参考訳(メタデータ) (2024-11-26T08:10:12Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - Improving AlphaFlow for Efficient Protein Ensembles Generation [64.10918970280603]
効率的なタンパク質アンサンブル生成を実現するために,AlphaFlow-Litと呼ばれる特徴条件付き生成モデルを提案する。
AlphaFlow-LitはAlphaFlowとオンパーで動作し、予行訓練なしで蒸留されたバージョンを上回り、47倍のサンプリング加速を達成している。
論文 参考訳(メタデータ) (2024-07-08T13:36:43Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
タンパク質構造生成のための新しいシーケンス条件付きフローマッチングモデルFoldFlow-2を紹介する。
我々は、以前の作業のPDBデータセットよりも桁違いに大きい新しいデータセットでFoldFlow-2を大規模にトレーニングします。
我々はFoldFlow-2が従来のタンパク質構造に基づく生成モデルよりも優れていることを実証的に観察した。
論文 参考訳(メタデータ) (2024-05-30T17:53:50Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
我々はFoldFlowを紹介した。FoldFlowは,3mathrmD$の剛性運動に対するフローマッチングパラダイムに基づく,モデリング能力向上のための新しい生成モデルである。
FoldFlow生成モデルのファミリーは、タンパク質の生成モデルに対する従来のアプローチよりもいくつかの利点を提供している。
論文 参考訳(メタデータ) (2023-10-03T19:24:24Z) - EigenFold: Generative Protein Structure Prediction with Diffusion Models [10.24107243529341]
EigenFoldは、特定のタンパク質配列から構造分布をサンプリングする拡散生成モデリングフレームワークである。
最近のCAMEOターゲットでは、EigenFoldは0.84の中央値TMSスコアを達成し、モデルの不確実性のより包括的な画像を提供する。
論文 参考訳(メタデータ) (2023-04-05T02:46:13Z) - AlphaFold Distillation for Protein Design [25.190210443632825]
逆タンパク質の折りたたみはバイオエンジニアリングと薬物発見に不可欠である。
AlphaFoldのような前方の折りたたみモデルは、シーケンスから構造を正確に予測することで潜在的な解決策を提供する。
本稿では, 折り畳みモデルの信頼性測定値に対する知識蒸留を用いて, より高速かつエンドツーエンドの識別可能な蒸留モデルを作成することを提案する。
論文 参考訳(メタデータ) (2022-10-05T19:43:06Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。