Advancing Video Anomaly Detection: A Concise Review and a New Dataset
- URL: http://arxiv.org/abs/2402.04857v4
- Date: Thu, 31 Oct 2024 13:01:13 GMT
- Title: Advancing Video Anomaly Detection: A Concise Review and a New Dataset
- Authors: Liyun Zhu, Lei Wang, Arjun Raj, Tom Gedeon, Chen Chen,
- Abstract summary: Video Anomaly Detection (VAD) finds widespread applications in security surveillance, traffic monitoring, industrial monitoring, and healthcare.
Despite extensive research efforts, there remains a lack of concise reviews that provide insightful guidance for researchers.
We present such a review, examining models and datasets from various perspectives.
- Score: 8.822253683273841
- License:
- Abstract: Video Anomaly Detection (VAD) finds widespread applications in security surveillance, traffic monitoring, industrial monitoring, and healthcare. Despite extensive research efforts, there remains a lack of concise reviews that provide insightful guidance for researchers. Such reviews would serve as quick references to grasp current challenges, research trends, and future directions. In this paper, we present such a review, examining models and datasets from various perspectives. We emphasize the critical relationship between model and dataset, where the quality and diversity of datasets profoundly influence model performance, and dataset development adapts to the evolving needs of emerging approaches. Our review identifies practical issues, including the absence of comprehensive datasets with diverse scenarios. To address this, we introduce a new dataset, Multi-Scenario Anomaly Detection (MSAD), comprising 14 distinct scenarios captured from various camera views. Our dataset has diverse motion patterns and challenging variations, such as different lighting and weather conditions, providing a robust foundation for training superior models. We conduct an in-depth analysis of recent representative models using MSAD and highlight its potential in addressing the challenges of detecting anomalies across diverse and evolving surveillance scenarios. [Project website: https://msad-dataset.github.io/]
Related papers
- A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series [0.01874930567916036]
Current publicly available datasets are too small, not diverse and feature trivial anomalies.
We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools.
We make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions.
As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts.
arXiv Detail & Related papers (2024-11-21T09:03:12Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset [14.246172794156987]
$textitCableInspect-AD$ is a high-quality dataset created and annotated by domain experts from Hydro-Qu'ebec, a Canadian public utility.
This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels.
We present a comprehensive evaluation protocol based on cross-validation to assess models' performances.
arXiv Detail & Related papers (2024-09-30T14:50:13Z) - Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
Time-series anomaly detection plays an important role in engineering processes.
This survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made.
It presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Bench is a benchmark designed to assess the proficiency of Video-LMMs in detecting anomalies and inconsistencies in videos.
Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models.
We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies.
arXiv Detail & Related papers (2024-06-14T17:59:01Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Video Anomaly Detection in 10 Years: A Survey and Outlook [10.143205531474907]
Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring.
This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches.
arXiv Detail & Related papers (2024-05-29T17:56:31Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.