論文の概要: SCLA: Automated Smart Contract Summarization via LLMs and Control Flow Prompt
- arxiv url: http://arxiv.org/abs/2402.04863v6
- Date: Thu, 13 Mar 2025 07:05:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 17:52:00.958241
- Title: SCLA: Automated Smart Contract Summarization via LLMs and Control Flow Prompt
- Title(参考訳): SCLA: LLMと制御フロープロンプトによるスマートコントラクトの自動要約
- Authors: Xiaoqi Li, Yingjie Mao, Zexin Lu, Wenkai Li, Zongwei Li,
- Abstract要約: 制御フローグラフ(CFG)とコードの制御フローからの意味的事実を意味的にリッチなプロンプトに組み込むことで要約を強化するLCMに基づくSCLAを提案する。
実世界の4万件のスマートコントラクトのデータセットに関する総合的な実験を通じて,SCLAの有効性を検証する。
実験の結果、SCLAは総和品質を著しく改善し、SOTAベースラインを26.7%、23.2%、16.7%、14.7%とそれぞれBLEU-4、METEOR、ROUGE-L、BLEURTのスコアで上回った。
- 参考スコア(独自算出の注目度): 2.539913845592959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contract code summarization is crucial for efficient maintenance and vulnerability mitigation. While many studies use Large Language Models (LLMs) for summarization, their performance still falls short compared to fine-tuned models like CodeT5+ and CodeBERT. Some approaches combine LLMs with data flow analysis but fail to fully capture the hierarchy and control structures of the code, leading to information loss and degraded summarization quality. We propose SCLA, an LLM-based method that enhances summarization by integrating a Control Flow Graph (CFG) and semantic facts from the code's control flow into a semantically enriched prompt. SCLA uses a control flow extraction algorithm to derive control flows from semantic nodes in the Abstract Syntax Tree (AST) and constructs the corresponding CFG. Code semantic facts refer to both explicit and implicit information within the AST that is relevant to smart contracts. This method enables LLMs to better capture the structural and contextual dependencies of the code. We validate the effectiveness of SCLA through comprehensive experiments on a dataset of 40,000 real-world smart contracts. The experiment shows that SCLA significantly improves summarization quality, outperforming the SOTA baselines with improvements of 26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4, METEOR, ROUGE-L, and BLEURT scores, respectively.
- Abstract(参考訳): スマートコントラクトコードの要約は、効率的なメンテナンスと脆弱性軽減に不可欠です。
多くの研究が要約にLarge Language Models (LLMs) を使用しているが、CodeT5+やCodeBERTのような微調整モデルに比べ、パフォーマンスは依然として低い。
LLMとデータフロー分析を組み合わせるアプローチもあるが、コードの階層構造と制御構造を完全に把握できず、情報損失と要約品質が低下する。
制御フローグラフ(CFG)とコードの制御フローからの意味的事実を意味的にリッチなプロンプトに組み込むことで要約を強化するLCMに基づくSCLAを提案する。
SCLAは、制御フロー抽出アルゴリズムを用いて、抽象構文木(AST)のセマンティックノードから制御フローを導出し、対応するCFGを構築する。
コードセマンティックな事実は、スマートコントラクトに関連するAST内の明示的な情報と暗黙的な情報の両方を指します。
この方法により、LLMはコードの構造的および文脈的依存関係をよりよくキャプチャできる。
実世界の4万件のスマートコントラクトのデータセットに関する総合的な実験を通じて,SCLAの有効性を検証する。
実験の結果、SCLAは総和品質を著しく向上させ、SOTAベースラインを26.7%、23.2%、16.7%、14.7%の改善をそれぞれBLEU-4、METEOR、ROUGE-L、BLEURTのスコアで上回った。
関連論文リスト
- LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
大きな言語モデル(LLM)は、テキスト理解とゼロショット推論において素晴らしい能力を持っている。
知識グラフ(KG)は、LLMの推論プロセスに対して、リッチで信頼性の高いコンテキスト情報を提供する。
我々は、KGQA(LightPROF)のための新しい軽量で効率的なPrompt Learning-ReasOning Frameworkを提案する。
論文 参考訳(メタデータ) (2025-04-04T03:03:47Z) - Post-Incorporating Code Structural Knowledge into LLMs via In-Context Learning for Code Translation [10.77747590700758]
大規模言語モデル(LLM)はソフトウェアマイニングにおいて大きな進歩を遂げた。
ソースコードの構文構造を扱うことは 依然として課題です
本稿では、コード構造知識を事前学習したLLMに組み込むために、インコンテキスト学習(ICL)を用いる。
論文 参考訳(メタデータ) (2025-03-28T10:59:42Z) - Code Summarization Beyond Function Level [0.213063058314067]
本研究では,関数レベルを超えたコード要約モデルの有効性について検討した。
微調整された最先端のCodeT5+ベースモデルは、コード要約に優れていた。
リポジトリレベルの要約は有望なポテンシャルを示したが、かなりの計算資源を必要とした。
論文 参考訳(メタデータ) (2025-02-23T20:31:21Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Utilizing Precise and Complete Code Context to Guide LLM in Automatic False Positive Mitigation [3.0538467265507574]
アプリケーションセキュリティテスト(SAST)ツールは、早期のバグ検出とコード品質には不可欠だが、しばしば開発を遅くする偽陽性を生成する。
自然言語とコードの理解に長けている大規模言語モデルは、SASTツールの正確性とユーザビリティを改善するための有望な方法を提供する。
我々の研究は、正確なコードコンテキストと完全なコードコンテキストの重大な影響を強調し、プログラム分析とLLMを組み合わせる可能性を強調します。
論文 参考訳(メタデータ) (2024-11-05T13:24:56Z) - Self-Explained Keywords Empower Large Language Models for Code Generation [5.236633572296712]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
Sek(textbfSelf-textbfExplained textbfKeywords)は、LLM自体による問題記述における重要な用語を抽出し、説明する。
論文 参考訳(メタデータ) (2024-10-21T12:52:03Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF)は、さまざまな領域で大きな可能性を証明している。
本稿では,軽量 (1B パラメータ) LLM のコード生成能力を改善するための RLAIF フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:16:03Z) - RAG-Enhanced Commit Message Generation [8.858678357308726]
コミットメッセージ生成は研究ホットスポットになっている。
手動でコミットメッセージを書くのに時間がかかります。
本稿では,Retrieval-Augmented framework for CommiTメッセージ生成のためのREACTを提案する。
論文 参考訳(メタデータ) (2024-06-08T16:24:24Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Compressing LLMs: The Truth is Rarely Pure and Never Simple [90.05366363633568]
Knowledge-Intensive Compressed LLM BenchmarKは、圧縮された大言語モデルの評価プロトコルを再定義することを目的としている。
LLM-KICKは、現在のSoTA圧縮方式の多くの有利な利点と不運な点を明らかにしている。
LLM-KICKは、言語理解、推論、生成、テキスト内検索、テキスト内要約などのための圧縮LLMの能力に一様にアクセスできるように設計されている。
論文 参考訳(メタデータ) (2023-10-02T17:42:37Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes [54.13559879916708]
EVAPORATEは大規模言語モデル(LLM)を利用したプロトタイプシステムである。
コード合成は安価だが、各文書をLSMで直接処理するよりもはるかに正確ではない。
直接抽出よりも優れた品質を実現する拡張コード実装EVAPORATE-CODE+を提案する。
論文 参考訳(メタデータ) (2023-04-19T06:00:26Z) - ContraCLM: Contrastive Learning For Causal Language Model [54.828635613501376]
トークンレベルとシーケンスレベルの両方において,新しいコントラスト学習フレームワークであるContraCLMを提案する。
ContraCLMは表現の識別を強化し、エンコーダのみのモデルとのギャップを埋めることを示す。
論文 参考訳(メタデータ) (2022-10-03T18:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。