論文の概要: On Provable Length and Compositional Generalization
- arxiv url: http://arxiv.org/abs/2402.04875v3
- Date: Fri, 7 Jun 2024 20:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 03:39:46.099906
- Title: On Provable Length and Compositional Generalization
- Title(参考訳): 確率長と組成一般化について
- Authors: Kartik Ahuja, Amin Mansouri,
- Abstract要約: 一般的なシーケンス・ツー・シーケンスモデルに対して、長さと合成の一般化に関する最初の証明可能な保証を提供する。
異なるアーキテクチャの限られた容量バージョンは、長さと構成の一般化の両方を達成することを示す。
- 参考スコア(独自算出の注目度): 7.883808173871223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution generalization capabilities of sequence-to-sequence models can be studied from the lens of two crucial forms of generalization: length generalization -- the ability to generalize to longer sequences than ones seen during training, and compositional generalization: the ability to generalize to token combinations not seen during training. In this work, we provide first provable guarantees on length and compositional generalization for common sequence-to-sequence models -- deep sets, transformers, state space models, and recurrent neural nets -- trained to minimize the prediction error. Taking a first principles perspective, we study the realizable case, i.e., the labeling function is realizable on the architecture. We show that limited capacity versions of these different architectures achieve both length and compositional generalization. Across different architectures, we also find that a linear relationship between the learned representation and the representation in the labeling function is necessary for length and compositional generalization.
- Abstract(参考訳): シーケンス・ツー・シーケンスモデルのアウト・オブ・ディストリビューションの一般化能力は、長さの一般化 - トレーニング中に見られるものよりも長いシーケンスに一般化する能力、構成的な一般化 - トレーニング中に見られないトークンの組み合わせに一般化する能力という2つの重要な一般化のレンズから研究することができる。
本研究では、予測誤差を最小限に抑えるために訓練された、一般的なシーケンス・ツー・シーケンスモデル(ディープ・セット、トランスフォーマー、ステート・スペース・モデル、リカレント・ニューラル・ネット)について、長さと構成的一般化に関する最初の証明可能な保証を提供する。
第一原理の観点から、我々は実現可能なケース、すなわちラベリング関数をアーキテクチャ上で実現可能であることを研究する。
これらの異なるアーキテクチャの限られた容量バージョンは、長さと構成の一般化の両方を達成することを示す。
また,学習した表現とラベリング関数の表現との線形関係は,長さや構成の一般化に必要であることがわかった。
関連論文リスト
- GRAM: Generalization in Deep RL with a Robust Adaptation Module [29.303051759538416]
本研究では,深層強化学習における動的一般化の枠組みを提案する。
本稿では,分散環境と分散環境の両方を識別・反応する機構を提供するロバスト適応モジュールを提案する。
我々のアルゴリズムであるGRAMは,展開時の分布内および分布外シナリオにまたがる強力な一般化性能を実現する。
論文 参考訳(メタデータ) (2024-12-05T16:39:01Z) - A Formal Framework for Understanding Length Generalization in Transformers [14.15513446489798]
因果変換器における長さ一般化を解析するための厳密な理論的枠組みを導入する。
我々は,この理論を,アルゴリズムおよび形式言語タスクにおける長さ一般化の成功と失敗の予測器として実験的に検証した。
論文 参考訳(メタデータ) (2024-10-03T01:52:01Z) - On the Generalization Ability of Unsupervised Pretraining [53.06175754026037]
教師なし学習の最近の進歩は、教師なし事前学習、および微調整がモデル一般化を改善することを示している。
本稿では、教師なし事前学習中に得られた知識の伝達可能性に影響を及ぼす重要な要因をその後の微調整フェーズに照らす新しい理論的枠組みを提案する。
この結果は教師なし事前学習と微調整のパラダイムの理解を深め、より効果的な事前学習アルゴリズムの設計に光を当てることができる。
論文 参考訳(メタデータ) (2024-03-11T16:23:42Z) - On the generalization capacity of neural networks during generic
multimodal reasoning [20.1430673356983]
マルチモーダル一般化のための大規模言語モデルの能力を評価し比較する。
マルチモーダルインプットと体系的一般化のためには、クロスモーダルアテンションまたはより深いアテンション層を持つモデルが、マルチモーダルインプットを統合するのに必要な重要なアーキテクチャ的特徴である。
論文 参考訳(メタデータ) (2024-01-26T17:42:59Z) - Real-World Compositional Generalization with Disentangled
Sequence-to-Sequence Learning [81.24269148865555]
最近提案されたDunangled sequence-to-sequence model (Dangle)は、有望な一般化能力を示している。
このモデルに2つの重要な変更を加え、より不整合表現を奨励し、その計算とメモリ効率を改善する。
具体的には、各タイミングでソースキーと値を適応的に再エンコードするのではなく、表現をアンタングルし、キーを定期的に再エンコードする。
論文 参考訳(メタデータ) (2022-12-12T15:40:30Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
最近のデータセットは、標準的なシーケンス・ツー・シーケンスモデルにおける体系的な一般化能力の欠如を露呈している。
本稿では,セq2seqモデルの振る舞いを分析し,相互排他バイアスの欠如と全例を記憶する傾向の2つの要因を同定する。
広範に使用されている2つの構成性データセット上で、標準的なシーケンス・ツー・シーケンスモデルを用いて、経験的改善を示す。
論文 参考訳(メタデータ) (2022-11-28T17:36:41Z) - Compositional Generalisation with Structured Reordering and Fertility
Layers [121.37328648951993]
Seq2seqモデルは構成一般化に苦しむことが示されている。
本稿では、2つの構造演算を構成するフレキシブルなエンドツーエンドの微分可能なニューラルモデルを提案する。
論文 参考訳(メタデータ) (2022-10-06T19:51:31Z) - Compositional Generalization Requires Compositional Parsers [69.77216620997305]
直近のCOGSコーパスにおける構成原理によって導かれるシーケンス・ツー・シーケンスモデルとモデルを比較した。
構造一般化は構成一般化の重要な尺度であり、複雑な構造を認識するモデルを必要とする。
論文 参考訳(メタデータ) (2022-02-24T07:36:35Z) - Disentangled Sequence to Sequence Learning for Compositional
Generalization [62.954842223732435]
本稿では,ソース入力を適応的に再符号化することで,不整合表現の学習を可能にするシーケンス・ツー・シーケンス・モデルの拡張を提案する。
意味解析と機械翻訳の実験結果から,提案手法はより不整合な表現とより優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2021-10-09T22:27:19Z) - Symbolic Brittleness in Sequence Models: on Systematic Generalization in
Symbolic Mathematics [38.62999063710003]
我々は、テストセットを超えて体系的に一般化する必要があるため、記号的数学的積分の問題を考察する。
本稿では,問題領域の構造と検証器へのアクセスを活かした一般化評価手法を開発する。
本研究では,手動テストスイートと遺伝的アルゴリズムの両方を用いて,ロバスト性,構成性,分布外一般化を実現する上での課題を示す。
論文 参考訳(メタデータ) (2021-09-28T18:50:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。