Toward Accurate Camera-based 3D Object Detection via Cascade Depth
Estimation and Calibration
- URL: http://arxiv.org/abs/2402.04883v1
- Date: Wed, 7 Feb 2024 14:21:26 GMT
- Title: Toward Accurate Camera-based 3D Object Detection via Cascade Depth
Estimation and Calibration
- Authors: Chaoqun Wang, Yiran Qin, Zijian Kang, Ningning Ma, and Ruimao Zhang
- Abstract summary: Recent camera-based 3D object detection is limited by the precision of transforming from image to 3D feature spaces.
This paper aims to address such a fundamental problem of camera-based 3D object detection: How to effectively learn depth information for accurate feature lifting and object localization.
- Score: 20.82054596017465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent camera-based 3D object detection is limited by the precision of
transforming from image to 3D feature spaces, as well as the accuracy of object
localization within the 3D space. This paper aims to address such a fundamental
problem of camera-based 3D object detection: How to effectively learn depth
information for accurate feature lifting and object localization. Different
from previous methods which directly predict depth distributions by using a
supervised estimation model, we propose a cascade framework consisting of two
depth-aware learning paradigms. First, a depth estimation (DE) scheme leverages
relative depth information to realize the effective feature lifting from 2D to
3D spaces. Furthermore, a depth calibration (DC) scheme introduces depth
reconstruction to further adjust the 3D object localization perturbation along
the depth axis. In practice, the DE is explicitly realized by using both the
absolute and relative depth optimization loss to promote the precision of depth
prediction, while the capability of DC is implicitly embedded into the
detection Transformer through a depth denoising mechanism in the training
phase. The entire model training is accomplished through an end-to-end manner.
We propose a baseline detector and evaluate the effectiveness of our proposal
with +2.2%/+2.7% NDS/mAP improvements on NuScenes benchmark, and gain a
comparable performance with 55.9%/45.7% NDS/mAP. Furthermore, we conduct
extensive experiments to demonstrate its generality based on various detectors
with about +2% NDS improvements.
Related papers
- OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
arXiv Detail & Related papers (2024-07-15T14:29:15Z) - SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
arXiv Detail & Related papers (2024-07-07T06:52:51Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
We propose a method to boost the RGB image-based 3D detector by jointly training the detection network with a depth prediction loss analogous to the depth estimation task.
Our novel object-centric depth prediction loss focuses on depth around foreground objects, which is important for 3D object detection.
Our depth regression model is further trained to predict the uncertainty of depth to represent the 3D confidence of objects.
arXiv Detail & Related papers (2022-10-29T11:32:28Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification.
Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks.
arXiv Detail & Related papers (2022-01-12T07:11:18Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.