OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection
- URL: http://arxiv.org/abs/2407.10753v1
- Date: Mon, 15 Jul 2024 14:29:15 GMT
- Title: OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection
- Authors: Jinghua Hou, Tong Wang, Xiaoqing Ye, Zhe Liu, Shi Gong, Xiao Tan, Errui Ding, Jingdong Wang, Xiang Bai,
- Abstract summary: We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
- Score: 102.0744303467713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate depth information is crucial for enhancing the performance of multi-view 3D object detection. Despite the success of some existing multi-view 3D detectors utilizing pixel-wise depth supervision, they overlook two significant phenomena: 1) the depth supervision obtained from LiDAR points is usually distributed on the surface of the object, which is not so friendly to existing DETR-based 3D detectors due to the lack of the depth of 3D object center; 2) for distant objects, fine-grained depth estimation of the whole object is more challenging. Therefore, we argue that the object-wise depth (or 3D center of the object) is essential for accurate detection. In this paper, we propose a new multi-view 3D object detector named OPEN, whose main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding. Specifically, we first employ an object-wise depth encoder, which takes the pixel-wise depth map as a prior, to accurately estimate the object-wise depth. Then, we utilize the proposed object-wise position embedding to encode the object-wise depth information into the transformer decoder, thereby producing 3D object-aware features for final detection. Extensive experiments verify the effectiveness of our proposed method. Furthermore, OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
Related papers
- Toward Accurate Camera-based 3D Object Detection via Cascade Depth
Estimation and Calibration [20.82054596017465]
Recent camera-based 3D object detection is limited by the precision of transforming from image to 3D feature spaces.
This paper aims to address such a fundamental problem of camera-based 3D object detection: How to effectively learn depth information for accurate feature lifting and object localization.
arXiv Detail & Related papers (2024-02-07T14:21:26Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts [6.639648061168067]
We propose MonoPGC, a novel end-to-end Monocular 3D object detection framework with rich Pixel Geometry Contexts.
We introduce the pixel depth estimation as our auxiliary task and design depth cross-attention pyramid module (DCPM) to inject local and global depth geometry knowledge into visual features.
In addition, we present the depth-space-aware transformer (DSAT) to integrate 3D space position and depth-aware features efficiently.
arXiv Detail & Related papers (2023-02-21T09:21:58Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
We propose a method to boost the RGB image-based 3D detector by jointly training the detection network with a depth prediction loss analogous to the depth estimation task.
Our novel object-centric depth prediction loss focuses on depth around foreground objects, which is important for 3D object detection.
Our depth regression model is further trained to predict the uncertainty of depth to represent the 3D confidence of objects.
arXiv Detail & Related papers (2022-10-29T11:32:28Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection [61.89277940084792]
We introduce the first DETR framework for Monocular DEtection with a depth-guided TRansformer, named MonoDETR.
We formulate 3D object candidates as learnable queries and propose a depth-guided decoder to conduct object-scene depth interactions.
On KITTI benchmark with monocular images as input, MonoDETR achieves state-of-the-art performance and requires no extra dense depth annotations.
arXiv Detail & Related papers (2022-03-24T19:28:54Z) - SIDE: Center-based Stereo 3D Detector with Structure-aware Instance
Depth Estimation [11.169586369931803]
We propose a stereo-image based anchor-free 3D detection method, called structure-aware stereo 3D detector (termed as SIDE)
We explore the instance-level depth information via constructing the cost volume from RoIs of each object.
Our method achieves the state-of-the-art performance compared to existing methods without depth map supervision.
arXiv Detail & Related papers (2021-08-22T08:09:38Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Multi-Task Multi-Sensor Fusion for 3D Object Detection [93.68864606959251]
We present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion.
Our experiments show that all these tasks are complementary and help the network learn better representations by fusing information at various levels.
arXiv Detail & Related papers (2020-12-22T22:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.