論文の概要: Exploring responsible applications of Synthetic Data to advance Online
Safety Research and Development
- arxiv url: http://arxiv.org/abs/2402.04910v1
- Date: Wed, 7 Feb 2024 14:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 15:04:51.806353
- Title: Exploring responsible applications of Synthetic Data to advance Online
Safety Research and Development
- Title(参考訳): オンライン安全研究・開発への合成データの責任応用の検討
- Authors: Pica Johansson, Jonathan Bright, Shyam Krishna, Claudia Fischer, David
Leslie
- Abstract要約: 合成データの利用は、オンラインの安全研究と開発を加速する機会を提供する。
本報告では、合成データのオンライン安全分野への応用の可能性について検討し、この技術の効果的な利用がもたらす倫理的課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of synthetic data provides an opportunity to accelerate online safety
research and development efforts while showing potential for bias mitigation,
facilitating data storage and sharing, preserving privacy and reducing exposure
to harmful content. However, the responsible use of synthetic data requires
caution regarding anticipated risks and challenges. This short report explores
the potential applications of synthetic data to the domain of online safety,
and addresses the ethical challenges that effective use of the technology may
present.
- Abstract(参考訳): 合成データの利用は、バイアス緩和の可能性を示しながら、オンラインの安全研究と開発を加速する機会を提供し、データの保存と共有を促進し、プライバシを保護し、有害なコンテンツへの露出を減らす。
しかしながら、合成データの責任ある使用には、予想されるリスクと課題に関する注意が必要である。
本報告では, 合成データのオンライン安全分野への応用の可能性について検討し, 有効利用の倫理的課題に対処する。
関連論文リスト
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Instance-Level Safety-Aware Fidelity of Synthetic Data and Its Calibration [5.089356301032639]
4種類のインスタンスレベルの忠実さを導入し、安全クリティカルなアプリケーションにおけるその役割に焦点を当てる。
目的は、合成データにテストを適用することによって、現実世界の安全性の問題を明らかにすることだ。
論文 参考訳(メタデータ) (2024-02-10T19:45:40Z) - Synthetic Multimodal Dataset for Empowering Safety and Well-being in
Home Environments [1.747623282473278]
本稿では,3次元仮想空間シミュレータからの映像データを知識グラフで融合した日中活動の合成マルチモーダル時間について述べる。
このデータセットはKGRC4SI(Knowledge Graph Reasoning Challenge Social Issues)のために開発された。
論文 参考訳(メタデータ) (2024-01-26T10:05:41Z) - Synthetic Data in AI: Challenges, Applications, and Ethical Implications [16.01404243695338]
本稿では,合成データの多面的側面について考察する。
これらのデータセットが持つ可能性のある課題と潜在的なバイアスを強調します。
また、合成データセットに関連する倫理的考察と法的意味についても批判的に論じている。
論文 参考訳(メタデータ) (2024-01-03T09:03:30Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
本稿では,合成データの生成,利用,普及を規定する政策について検討する。
優れた合成データポリシーは、プライバシの懸念とデータの有用性のバランスを取らなければならない。
論文 参考訳(メタデータ) (2023-08-31T23:18:53Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
研究コミュニティと業界の両方で勢いを増す可能性のある選択肢は、代わりに合成データを共有することだ。
我々は、合成データについて穏やかに紹介し、そのユースケース、未適応のプライバシー問題、そしてその固有の制限を効果的なプライバシー強化技術として論じます。
論文 参考訳(メタデータ) (2023-03-01T16:35:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。