論文の概要: Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing
- arxiv url: http://arxiv.org/abs/2405.10521v1
- Date: Fri, 17 May 2024 04:00:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:02:02.201459
- Title: Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing
- Title(参考訳): セキュリティとプライバシ保護のためのジェネレーティブAI
- Authors: Yaoqi Yang, Bangning Zhang, Daoxing Guo, Hongyang Du, Zehui Xiong, Dusit Niyato, Zhu Han,
- Abstract要約: 生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
- 参考スコア(独自算出の注目度): 74.58071278710896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, generative AI has attracted much attention from both academic and industrial fields, which has shown its potential, especially in the data generation and synthesis aspects. Simultaneously, secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement due to an advantage on low deployment cost, flexible implementation, and high adaptability. Since generative AI can generate new synthetic data to replace the original data to be analyzed and processed, it can lower data attacks and privacy leakage risks for the original data. Therefore, integrating generative AI into SPPMCS is feasible and significant. Moreover, this paper investigates an integration of generative AI in SPPMCS, where we present potential research focuses, solutions, and case studies. Specifically, we firstly review the preliminaries for generative AI and SPPMCS, where their integration potential is presented. Then, we discuss research issues and solutions for generative AI-enabled SPPMCS, including security defense of malicious data injection, illegal authorization, malicious spectrum manipulation at the physical layer, and privacy protection on sensing data content, sensing terminals' identification and location. Next, we propose a framework for sensing data content protection with generative AI, and simulations results have clearly demonstrated the effectiveness of the proposed framework. Finally, we present major research directions for generative AI-enabled SPPMCS.
- Abstract(参考訳): 近年、生成AIは、特にデータ生成と合成の面でその可能性を示す学術分野と産業分野の両方から注目を集めている。
同時に、セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)が、低いデプロイメントコスト、フレキシブルな実装、高い適応性といったメリットにより、データ収集/取得に広く適用されている。
生成AIは、分析および処理する元のデータを置き換えるために、新しい合成データを生成することができるため、元のデータに対するデータ攻撃とプライバシリークリスクを低減することができる。
したがって、生成AIをSPPMCSに統合することは可能であり、重要である。
そこで本研究では,SPPMCSにおける生成AIの統合について検討し,本研究の可能性,解決策,ケーススタディについて述べる。
具体的には、まず、生成型AIとSPPMCSのプリミナリーをレビューし、その統合可能性を示す。
次に、悪意のあるデータ注入のセキュリティ保護、不正な認可、物理層における悪意のあるスペクトル操作、データコンテンツの検出に対するプライバシー保護、端末の識別と位置の検知を含む、生成AI対応SPPMCSの研究課題と解決策について議論する。
次に,データコンテンツ保護を生成AIで検出するフレームワークを提案する。
最後に, 生成型AI対応SPPMCS研究の方向性を示す。
関連論文リスト
- Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources [5.898893619901382]
分散データホルダから合成データの協調的かつプライベートな生成のためのフレームワークを提案する。
我々は信頼されたアグリゲータをセキュアなマルチパーティ計算プロトコルに置き換え、差分プライバシー(DP)を介してプライバシを出力する。
MWEM+PGMおよびAIMの最先端選択測度生成アルゴリズムに対するアプローチの適用性とスケーラビリティを実証する。
論文 参考訳(メタデータ) (2024-02-13T17:26:32Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Reconciling AI Performance and Data Reconstruction Resilience for
Medical Imaging [52.578054703818125]
人工知能(AI)モデルは、トレーニングデータの情報漏洩に対して脆弱であり、非常に敏感である。
差別化プライバシ(DP)は、定量的なプライバシー予算を設定することで、これらの感受性を回避することを目的としている。
非常に大きなプライバシ予算を使用することで、リコンストラクション攻撃は不可能であり、パフォーマンスの低下は無視可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T12:21:30Z) - Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective [28.968233485060654]
データライフサイクルにおけるプライバシーと著作権保護の多面的課題について論じる。
我々は、技術的革新と倫理的展望を組み合わせた統合的なアプローチを提唱する。
この作業は、より広範な議論のきっかけとなり、ジェネレーティブAIにおけるデータのプライバシと著作権の整合性に対する継続的な取り組みを促進することを目的としている。
論文 参考訳(メタデータ) (2023-11-30T05:03:08Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Security and Privacy on Generative Data in AIGC: A Survey [17.456578314457612]
我々はAIGCにおける生成データのセキュリティとプライバシについてレビューする。
プライバシ、制御性、信頼性、コンプライアンスの基本的な性質の観点から、最先端の対策が成功した経験を明らかにする。
論文 参考訳(メタデータ) (2023-09-18T02:35:24Z) - Privacy-preserving Artificial Intelligence Techniques in Biomedicine [3.908261721108553]
機密データに基づくAIモデルのトレーニングは、個々の参加者のプライバシに関する懸念を提起する。
本稿では,生物医学におけるプライバシ保存型AI技術の進歩について概説する。
最も重要な最先端のアプローチを統一された分類分野に配置し、その強み、限界、オープンな問題について議論する。
論文 参考訳(メタデータ) (2020-07-22T18:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。