Revisiting Inexact Fixed-Point Iterations for Min-Max Problems: Stochasticity and Structured Nonconvexity
- URL: http://arxiv.org/abs/2402.05071v2
- Date: Mon, 12 Aug 2024 23:43:59 GMT
- Title: Revisiting Inexact Fixed-Point Iterations for Min-Max Problems: Stochasticity and Structured Nonconvexity
- Authors: Ahmet Alacaoglu, Donghwan Kim, Stephen J. Wright,
- Abstract summary: We show that $1L 1$ can be used to improve some state-of-the-art problems even for a multilevel Carlo iteration.
We provide an analysis for inexact Halperness estimators for $1L 1$ when the only hold with respect to a solution is a new $1L 1$ theory.
- Score: 18.427215139020632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on constrained, $L$-smooth, potentially stochastic and nonconvex-nonconcave min-max problems either satisfying $\rho$-cohypomonotonicity or admitting a solution to the $\rho$-weakly Minty Variational Inequality (MVI), where larger values of the parameter $\rho>0$ correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on which classical min-max algorithms fail. It has been conjectured that first-order methods can tolerate a value of $\rho$ no larger than $\frac{1}{L}$, but existing results in the literature have stagnated at the tighter requirement $\rho < \frac{1}{2L}$. With a simple argument, we obtain optimal or best-known complexity guarantees with cohypomonotonicity or weak MVI conditions for $\rho < \frac{1}{L}$. First main insight for the improvements in the convergence analyses is to harness the recently proposed $\textit{conic nonexpansiveness}$ property of operators. Second, we provide a refined analysis for inexact Halpern iteration that relaxes the required inexactness level to improve some state-of-the-art complexity results even for constrained stochastic convex-concave min-max problems. Third, we analyze a stochastic inexact Krasnosel'ski\u{\i}-Mann iteration with a multilevel Monte Carlo estimator when the assumptions only hold with respect to a solution.
Related papers
- Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
We provide a unified analysis of two-timescale gradient ascent (TTGDA) for solving structured non minimax optimization problems.
Our contribution is to design TTGDA algorithms are effective beyond the setting.
arXiv Detail & Related papers (2024-08-21T20:14:54Z) - Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
First-order algorithms require at least $mathcalO(varepsilonepsilon-4)$ complexity to find an $varepsilon-stationary point.
We introduce novel momentum algorithms utilizing efficient variable complexity.
The effectiveness of the method is validated through robust logistic regression using real-world datasets.
arXiv Detail & Related papers (2024-06-18T20:14:52Z) - Single-Loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions [41.43895948769255]
We show a class of non-smooth non-asymptotic fairness problems in the form of $min_x[yin Yphi(x, y) - max_zin Zpsix(x, z)]$.
We propose an envelope approximate gradient SMAG, the first method for solving these problems, provide a state-of-the-art non-asymptotic convergence rate.
arXiv Detail & Related papers (2024-05-28T20:52:46Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
arXiv Detail & Related papers (2023-02-13T00:22:28Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Higher-order methods for convex-concave min-max optimization and
monotone variational inequalities [7.645449711892907]
We provide improved convergence rates for constrained convex-concave min-max problems and monotone variational inequalities with higher-order smoothness.
For $p>2$, our results improve upon the iteration complexity of the first-order Mirror Prox method of Nemirovski.
We further instantiate our entire algorithm in the unconstrained $p=2$ case.
arXiv Detail & Related papers (2020-07-09T03:12:33Z) - Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max
Optimization [61.66927778694731]
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for strongly convex minimization.
Our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O (1/T)$ for the duality gap of SCSC min-max problems.
arXiv Detail & Related papers (2020-02-13T02:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.