Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training
- URL: http://arxiv.org/abs/2402.05227v3
- Date: Thu, 20 Mar 2025 08:02:43 GMT
- Title: Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training
- Authors: Jakab Nádori, Gregory Morse, Zita Majnay-Takács, Zoltán Zimborás, Péter Rakyta,
- Abstract summary: Variational quantum algorithms are viewed as promising candidates for demonstrating quantum advantage on near-term devices.<n>This work introduces a novel optimization approach designed to alleviate the adverse effects of barren plateau problems during circuit training.<n>The modified algorithm has been successfully utilized in quantum gate synthesis applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are viewed as promising candidates for demonstrating quantum advantage on near-term devices. These approaches typically involve the training of parameterized quantum circuits through a classical optimization loop. However, they often encounter challenges attributed to the exponentially diminishing gradient components, known as the barren plateau (BP) problem. This work introduces a novel optimization approach designed to alleviate the adverse effects of BPs during circuit training. In contrast to conventional gradient descent methods with a small learning parameter, our approach relies on making a finite hops along the search direction determined on a randomly chosen subsets of the free parameters. The optimization search direction, together with the range of the search, is determined by the distant features of the cost-function landscape. This enables the optimization path to navigate around barren plateaus without the need for external control mechanisms. We have successfully applied our optimization strategy to quantum circuits comprising 16 qubits and 15000 entangling gates, demonstrating robust resistance against BPs. Additionally, we have extended our optimization strategy by incorporating an evolutionary selection framework, enhancing its ability to avoid local minima in the landscape. The modified algorithm has been successfully utilized in quantum gate synthesis applications, showcasing a significantly improved efficiency in generating highly compressed quantum circuits compared to traditional gradient-based optimization approaches.
Related papers
- Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Cost Explosion for Efficient Reinforcement Learning Optimisation of
Quantum Circuits [55.616364225463066]
Reinforcement Learning (RL) is a recent approach for learning strategies to optimise quantum circuits by increasing the reward of an optimisation agent.
Our goal is to improve the agent's optimization strategy, by including hints about how quantum circuits are optimized manually.
We show that allowing cost explosions offers significant advantages for RL training, such as reaching optimum circuits.
arXiv Detail & Related papers (2023-11-21T10:16:03Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Avoiding local minima in Variational Quantum Algorithms with Neural
Networks [0.0]
Variational Quantum Algorithms have emerged as a leading paradigm for near-term computation.
In this paper we present two algorithms within benchmark them on instances of the gradient landscape problem.
We suggest that our approach suggests that the cost landscape is a fruitful path to improving near-term quantum computing algorithms.
arXiv Detail & Related papers (2021-04-07T07:07:28Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Natural Evolutionary Strategies for Variational Quantum Computation [0.7874708385247353]
Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms.
This study illustrates their use for the optimization of randomly-d parametrized quantum circuits (PQCs) in the region of vanishing gradients.
arXiv Detail & Related papers (2020-11-30T21:23:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.