Convergence for Natural Policy Gradient on Infinite-State Queueing MDPs
- URL: http://arxiv.org/abs/2402.05274v2
- Date: Thu, 31 Oct 2024 23:14:00 GMT
- Title: Convergence for Natural Policy Gradient on Infinite-State Queueing MDPs
- Authors: Isaac Grosof, Siva Theja Maguluri, R. Srikant,
- Abstract summary: A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs)
In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs.
At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm.
- Score: 14.14642081068942
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs). In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm. Convergence results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing results on the convergence of the NPG algorithm are limited to finite-state settings. We study a general class of queueing MDPs, and prove a $O(1/\sqrt{T})$ convergence rate for the NPG algorithm, if the NPG algorithm is initialized with the MaxWeight policy. This is the first convergence rate bound for the NPG algorithm for a general class of infinite-state average-reward MDPs. Moreover, our result applies to a beyond the queueing setting to any countably-infinite MDP satisfying certain mild structural assumptions, given a sufficiently good initial policy. Key to our result are state-dependent bounds on the relative value function achieved by the iterate policies of the NPG algorithm.
Related papers
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Optimistic Natural Policy Gradient: a Simple Efficient Policy
Optimization Framework for Online RL [23.957148537567146]
This paper proposes a simple efficient policy optimization framework -- Optimistic NPG for online RL.
For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $varepsilon$-optimal policy within $tildeO(d2/varepsilon3)$ samples.
arXiv Detail & Related papers (2023-05-18T15:19:26Z) - Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm [42.83837408373223]
We consider the problem of constrained Markov decision process (CMDP) in continuous state-actions spaces.
We propose a novel Conservative Natural Policy Gradient Primal-Dual Algorithm (C-NPG-PD) to achieve zero constraint violation.
arXiv Detail & Related papers (2022-06-12T22:31:43Z) - Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning [17.916366827429034]
We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions.
We propose an Anchor-changing Regularized Natural Policy Gradient framework, which can incorporate ideas from well-performing first-order methods.
arXiv Detail & Related papers (2022-06-10T21:09:44Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.