Examining Modality Incongruity in Multimodal Federated Learning for
Medical Vision and Language-based Disease Detection
- URL: http://arxiv.org/abs/2402.05294v1
- Date: Wed, 7 Feb 2024 22:16:53 GMT
- Title: Examining Modality Incongruity in Multimodal Federated Learning for
Medical Vision and Language-based Disease Detection
- Authors: Pramit Saha, Divyanshu Mishra, Felix Wagner, Konstantinos Kamnitsas,
J. Alison Noble
- Abstract summary: The impact of missing modality in different clients, also called modality incongruity, has been greatly overlooked.
This paper, for the first time, analyses the impact of modality incongruity and reveals its connection with data heterogeneity across participating clients.
- Score: 7.515840210206994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Federated Learning (MMFL) utilizes multiple modalities in each
client to build a more powerful Federated Learning (FL) model than its unimodal
counterpart. However, the impact of missing modality in different clients, also
called modality incongruity, has been greatly overlooked. This paper, for the
first time, analyses the impact of modality incongruity and reveals its
connection with data heterogeneity across participating clients. We
particularly inspect whether incongruent MMFL with unimodal and multimodal
clients is more beneficial than unimodal FL. Furthermore, we examine three
potential routes of addressing this issue. Firstly, we study the effectiveness
of various self-attention mechanisms towards incongruity-agnostic information
fusion in MMFL. Secondly, we introduce a modality imputation network (MIN)
pre-trained in a multimodal client for modality translation in unimodal clients
and investigate its potential towards mitigating the missing modality problem.
Thirdly, we assess the capability of client-level and server-level
regularization techniques towards mitigating modality incongruity effects.
Experiments are conducted under several MMFL settings on two publicly available
real-world datasets, MIMIC-CXR and Open-I, with Chest X-Ray and radiology
reports.
Related papers
- The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
This paper presents the first systematic investigation of hallucinations in large multimodal models (LMMs)
Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations.
Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning.
arXiv Detail & Related papers (2024-10-16T17:59:02Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Communication-Efficient Multimodal Federated Learning: Joint Modality
and Client Selection [14.261582708240407]
Multimodal Federated learning (FL) aims to enrich model training in FL settings where clients are collecting measurements across multiple modalities.
Key challenges to multimodal FL remain unaddressed, particularly in heterogeneous network settings.
We propose mmFedMC, a new FL methodology that can tackle the above-mentioned challenges in multimodal settings.
arXiv Detail & Related papers (2024-01-30T02:16:19Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
Multimodal Federated Cross Prototype Learning (MFCPL) is a novel approach for MFL under severely missing modalities.
MFCPL provides diverse modality knowledge in modality-shared level with the cross-modal regularization and modality-specific level with cross-modal contrastive mechanism.
Our approach introduces the cross-modal alignment to provide regularization for modality-specific features, thereby enhancing overall performance.
arXiv Detail & Related papers (2024-01-25T02:25:23Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
Incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition.
We propose the Hierarchical Crossmodal Transformer with Dynamic Modality Gating (HCT-DMG), a lightweight incongruity-aware model.
HCT-DMG: 1) outperforms previous multimodal models with a reduced size of approximately 0.8M parameters; 2) recognizes hard samples where incongruity makes affect recognition difficult; 3) mitigates the incongruity at the latent level in crossmodal attention.
arXiv Detail & Related papers (2023-05-23T01:24:15Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.