論文の概要: Optimizing for ROC Curves on Class-Imbalanced Data by Training over a Family of Loss Functions
- arxiv url: http://arxiv.org/abs/2402.05400v2
- Date: Tue, 4 Jun 2024 20:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 03:25:10.387551
- Title: Optimizing for ROC Curves on Class-Imbalanced Data by Training over a Family of Loss Functions
- Title(参考訳): 損失関数群を用いた学習によるクラス不均衡データに対するROC曲線の最適化
- Authors: Kelsey Lieberman, Shuai Yuan, Swarna Kamlam Ravindran, Carlo Tomasi,
- Abstract要約: 重度のクラス不均衡の下で信頼性の高い分類器を訓練することは、コンピュータビジョンにおいて難しい問題である。
近年の研究では、損失関数や最適化方法の変更により、不均衡下でのトレーニングの効果を緩和する手法が提案されている。
単一損失関数ではなく、損失関数の族に対するトレーニングを提案する。
- 参考スコア(独自算出の注目度): 3.06506506650274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although binary classification is a well-studied problem in computer vision, training reliable classifiers under severe class imbalance remains a challenging problem. Recent work has proposed techniques that mitigate the effects of training under imbalance by modifying the loss functions or optimization methods. While this work has led to significant improvements in the overall accuracy in the multi-class case, we observe that slight changes in hyperparameter values of these methods can result in highly variable performance in terms of Receiver Operating Characteristic (ROC) curves on binary problems with severe imbalance. To reduce the sensitivity to hyperparameter choices and train more general models, we propose training over a family of loss functions, instead of a single loss function. We develop a method for applying Loss Conditional Training (LCT) to an imbalanced classification problem. Extensive experiment results, on both CIFAR and Kaggle competition datasets, show that our method improves model performance and is more robust to hyperparameter choices. Code is available at https://github.com/klieberman/roc_lct.
- Abstract(参考訳): バイナリ分類はコンピュータビジョンにおいてよく研究されている問題であるが、厳密なクラス不均衡の下での信頼性の高い分類器の訓練は依然として難しい問題である。
近年の研究では、損失関数や最適化方法の変更により、不均衡下でのトレーニングの効果を緩和する手法が提案されている。
この研究は, マルチクラスの場合の全体的な精度を大幅に向上させたが, これらの手法のハイパーパラメータ値のわずかな変化は, 重度の不均衡を伴うバイナリ問題に対する受信動作特性(ROC)曲線において, 高い変動性能をもたらすことが観察された。
ハイパーパラメータ選択に対する感度を低減し、より一般的なモデルを訓練するために、単一損失関数ではなく、損失関数の族に対するトレーニングを提案する。
不均衡な分類問題にLCT(Loss Conditional Training)を適用する手法を開発した。
CIFARとKaggleのコンペティションデータセットによる大規模な実験結果から,本手法はモデル性能を向上し,ハイパーパラメータ選択に対してより堅牢であることが示された。
コードはhttps://github.com/klieberman/roc_lct.comで入手できる。
関連論文リスト
- Training Over a Distribution of Hyperparameters for Enhanced Performance and Adaptability on Imbalanced Classification [3.06506506650274]
条件付き損失訓練(LCT)は、厳しい階級不均衡の下で信頼性の高い分類器の訓練に使用できる。
LCTはいくつかのモデルの性能を近似し、CIFARおよび実際の医用画像アプリケーションにおけるモデル全体の性能を改善する。
論文 参考訳(メタデータ) (2024-10-04T16:47:11Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
実世界のデータセットは、しばしば高いクラス不均衡であり、ディープラーニングモデルのパフォーマンスに悪影響を及ぼす可能性がある。
クラス不均衡下でのニューラルネットワークのトレーニングに関する研究の大部分は、特殊な損失関数、サンプリング技術、または2段階のトレーニング手順に焦点を当てている。
バッチサイズやデータ拡張,ラベルの平滑化といった,標準的なディープラーニングパイプラインの既存のコンポーネントを単にチューニングするだけで,そのような特殊なクラス不均衡な手法を使わずに,最先端のパフォーマンスを達成できることを実証する。
論文 参考訳(メタデータ) (2023-12-05T05:52:44Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Online Hyperparameter Optimization for Class-Incremental Learning [99.70569355681174]
クラス増分学習(Class-incremental Learning, CIL)は、クラス数がフェーズごとに増加する一方で、分類モデルを訓練することを目的としている。
CILの固有の課題は、安定性と塑性のトレードオフである。すなわち、CILモデルは古い知識を保ち、新しい知識を吸収するためにプラスチックを保たなければならない。
本稿では,事前設定を知らずにトレードオフを適応的に最適化するオンライン学習手法を提案する。
論文 参考訳(メタデータ) (2023-01-11T17:58:51Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
本稿では,新しい損失関数 Xtreme Margin の損失関数について概説する。
二進的クロスエントロピーやヒンジ損失関数とは異なり、この損失関数は研究者や実践者がトレーニングプロセスに柔軟性をもたらす。
論文 参考訳(メタデータ) (2022-10-31T22:39:32Z) - Phased Progressive Learning with Coupling-Regulation-Imbalance Loss for
Imbalanced Classification [11.673344551762822]
ディープニューラルネットワークは、一般に、異なるクラス間の量不均衡と分類困難の不均衡に苦しむデータセットで性能が良くない。
表象学習から上位クラス化学習への学習強調を円滑に伝達する段階的な進行学習スケジュールが提案された。
私たちのコードはまもなくオープンソースになります。
論文 参考訳(メタデータ) (2022-05-24T14:46:39Z) - AutoBalance: Optimized Loss Functions for Imbalanced Data [38.64606886588534]
本稿では,2段階最適化フレームワークであるAutoBalanceを提案する。
具体的には、下層問題はモデル重みを訓練し、上層問題は、検証データに対して所望の目的を監視、最適化することにより損失関数を調整する。
我々の損失設計は、パラメトリックなクロスエントロピー損失と個別化されたデータ拡張スキームを用いて、クラス/グループをパーソナライズすることを可能にする。
論文 参考訳(メタデータ) (2022-01-04T15:53:23Z) - Mitigating Dataset Imbalance via Joint Generation and Classification [17.57577266707809]
教師付きディープラーニング手法は、コンピュータビジョンの多くの実践的応用において大きな成功を収めている。
バイアスや不均衡データに対する顕著な性能劣化は、これらの手法の信頼性に疑問を投げかける。
ニューラルネットワーク分類器とGAN(Generative Adversarial Networks)を組み合わせた共同データセット修復戦略を提案する。
重度のクラス不均衡に対する分類器とGANの堅牢性向上に寄与することを示す。
論文 参考訳(メタデータ) (2020-08-12T18:40:38Z) - Dynamic R-CNN: Towards High Quality Object Detection via Dynamic
Training [70.2914594796002]
ラベル割り当て基準と回帰損失関数の形状を調整するための動的R-CNNを提案する。
我々はResNet-50-FPNベースラインを1.9%のAPと5.5%のAP$_90$で改善し、余分なオーバーヘッドを伴わない。
論文 参考訳(メタデータ) (2020-04-13T15:20:25Z) - Learning Adaptive Loss for Robust Learning with Noisy Labels [59.06189240645958]
ロバスト損失は、堅牢な学習問題を扱うための重要な戦略である。
本稿では,強靭なハイパーチューニングが可能なメタ学習手法を提案する。
4種類のSOTA損失関数は, 最小化, 一般利用, 有効性を示す。
論文 参考訳(メタデータ) (2020-02-16T00:53:37Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
このようなシナリオ下でのConvNetの学習について検討する。
私たちは、ConvNetがマイナーなクラスにかなり適合していることに気づきました。
クラス依存型温度トレーニング(CDT)のConvNetの導入を提案する。
論文 参考訳(メタデータ) (2020-01-06T03:52:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。