論文の概要: Improving Agent Interactions in Virtual Environments with Language
Models
- arxiv url: http://arxiv.org/abs/2402.05440v1
- Date: Thu, 8 Feb 2024 06:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 16:04:19.553372
- Title: Improving Agent Interactions in Virtual Environments with Language
Models
- Title(参考訳): 言語モデルを用いた仮想環境におけるエージェントインタラクションの改善
- Authors: Jack Zhang
- Abstract要約: 本研究は、Minecraftデータセットにおける集合的なビルディング割り当てに焦点を当てる。
我々は,最先端手法によるタスク理解を強化するために,言語モデリングを採用している。
- 参考スコア(独自算出の注目度): 0.9790236766474201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing AI systems with efficient communication skills for effective human
assistance necessitates proactive initiatives from the system side to discern
specific circumstances and interact aptly. This research focuses on a
collective building assignment in the Minecraft dataset, employing language
modeling to enhance task understanding through state-of-the-art methods. These
models focus on grounding multi-modal understanding and task-oriented dialogue
comprehension tasks, providing insights into their interpretative and
responsive capabilities. Our experimental results showcase a substantial
improvement over existing methods, indicating a promising direction for future
research in this domain.
- Abstract(参考訳): 効果的なヒューマンアシストのための効率的なコミュニケーションスキルを備えたAIシステムを強化するには、特定の状況を認識し、適切に対話するために、システム側からの積極的なイニシアチブが必要である。
本研究は,最先端手法によるタスク理解を高めるために言語モデリングを用いたMinecraftデータセットの集合的構築課題に焦点を当てる。
これらのモデルは、マルチモーダル理解とタスク指向の対話理解タスクの接地に焦点を当て、その解釈と応答能力に関する洞察を提供する。
実験の結果,既存の手法よりも大幅に改善され,今後の研究の方向性が示唆された。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual Environments [42.06453257292203]
本稿では,大規模言語モデルの深い言語理解と強化学習エージェントの適応行動実行能力を組み合わせた階層型フレームワークを提案する。
IGLUではエージェントが構造を構築するように指示され、Crafterではエージェントがタスクを実行し、言語コマンドに従って周辺環境のオブジェクトと対話する。
論文 参考訳(メタデータ) (2024-07-12T14:19:36Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Harnessing the Power of Large Language Models for Empathetic Response Generation: Empirical Investigations and Improvements [28.630542719519855]
本研究では,大規模言語モデル(LLM)の共感応答生成における性能について実験的に検討する。
大規模な実験により, LLMは提案手法の利点を大いに生かし, 自動評価と人的評価の両方で最先端の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-10-08T12:21:24Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Solving Dialogue Grounding Embodied Task in a Simulated Environment
using Further Masked Language Modeling [0.0]
提案手法は,言語モデルを用いたSOTA(State-of-the-art)手法によるタスク理解を強化するために,言語モデリングを用いる。
実験の結果,提案手法が優れていることを示す証拠が得られた。
論文 参考訳(メタデータ) (2023-06-21T17:17:09Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Knowledge-enhanced Agents for Interactive Text Games [16.055119735473017]
テキストベースのゲームにおいてエージェントの機能的接地を改善するための知識注入フレームワークを提案する。
学習に基づくエージェントに注入するドメイン知識の2つの形態について考察する。
我々のフレームワークは、強化学習エージェントと言語モデルエージェントの2つの代表的なモデルクラスをサポートしている。
論文 参考訳(メタデータ) (2023-05-08T23:31:39Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。