論文の概要: Editable Scene Simulation for Autonomous Driving via Collaborative
LLM-Agents
- arxiv url: http://arxiv.org/abs/2402.05746v2
- Date: Mon, 11 Mar 2024 13:45:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 14:23:14.326259
- Title: Editable Scene Simulation for Autonomous Driving via Collaborative
LLM-Agents
- Title(参考訳): 協調LLMエージェントによる自律走行のための編集可能なシーンシミュレーション
- Authors: Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao,
Siheng Chen, Yanfeng Wang
- Abstract要約: ChatSimは、編集可能な3Dドライビングシーンシミュレーションを、外部デジタル資産を持つ自然言語コマンドで実現した最初のシステムである。
ChatSimは、フォトリアリスティックな結果を生成するために、新しいマルチカメラニューラルフィールド法を採用している。
- 参考スコア(独自算出の注目度): 51.227831076282904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene simulation in autonomous driving has gained significant attention
because of its huge potential for generating customized data. However, existing
editable scene simulation approaches face limitations in terms of user
interaction efficiency, multi-camera photo-realistic rendering and external
digital assets integration. To address these challenges, this paper introduces
ChatSim, the first system that enables editable photo-realistic 3D driving
scene simulations via natural language commands with external digital assets.
To enable editing with high command flexibility,~ChatSim leverages a large
language model (LLM) agent collaboration framework. To generate photo-realistic
outcomes, ChatSim employs a novel multi-camera neural radiance field method.
Furthermore, to unleash the potential of extensive high-quality digital assets,
ChatSim employs a novel multi-camera lighting estimation method to achieve
scene-consistent assets' rendering. Our experiments on Waymo Open Dataset
demonstrate that ChatSim can handle complex language commands and generate
corresponding photo-realistic scene videos.
- Abstract(参考訳): 自動運転におけるシーンシミュレーションは、カスタマイズされたデータを生成する大きな可能性から注目されている。
しかし,既存の編集可能なシーンシミュレーションでは,ユーザインタラクション効率,マルチカメラフォトリアリスティックレンダリング,外部デジタルアセット統合といった面で制限に直面している。
これらの課題に対処するために,外部デジタル資産を用いた自然言語コマンドによる編集可能な3次元実写シーンシミュレーションを可能にするChatSimを提案する。
コマンドの柔軟性を高めるために、~ChatSimは大きな言語モデル(LLM)エージェントコラボレーションフレームワークを活用している。
フォトリアリスティックな結果を生成するため、ChatSimは新しいマルチカメラニューラル放射場法を採用している。
さらに、広範囲な高品質デジタル資産の可能性を明らかにするため、チャットシムはシーン一貫性のある資産のレンダリングを実現するために、新しいマルチカメラ照明推定手法を採用している。
Waymo Open Datasetの実験は、ChatSimが複雑な言語コマンドを処理し、対応する写真リアリスティックシーンビデオを生成することを示した。
関連論文リスト
- SimGen: Simulator-conditioned Driving Scene Generation [50.03358485083602]
シミュレーション条件付きシーン生成フレームワークSimGenを紹介する。
SimGenは、シミュレータと現実世界のデータを混ぜることで、多様な運転シーンを生成することを学ぶ。
テキストプロンプトとシミュレータからのレイアウトに基づいて制御性を保ちながら、優れた生成品質と多様性を実現する。
論文 参考訳(メタデータ) (2024-06-13T17:58:32Z) - URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
そこで本研究では,実世界の画像からキネマティック構造と動的構造を合成したシミュレーションシーンを生成するエンドツーエンドパイプラインを提案する。
そこで本研究は,大規模シミュレーション環境のためのパイプラインと,ロバストなロボット制御ポリシをトレーニングするための統合システムの両方を提供する。
論文 参考訳(メタデータ) (2024-05-19T20:01:29Z) - S-NeRF++: Autonomous Driving Simulation via Neural Reconstruction and Generation [21.501865765631123]
S-NeRF++は神経再構成に基づく革新的な自律運転シミュレーションシステムである。
S-NeRF++は、nuScenesやradianceなど、広く使われている自動運転データセットでトレーニングされている。
システムは、ノイズとスパースLiDARデータを効果的に利用して、トレーニングを洗練し、奥行きの外れ値に対処する。
論文 参考訳(メタデータ) (2024-02-03T10:35:42Z) - GarchingSim: An Autonomous Driving Simulator with Photorealistic Scenes
and Minimalist Workflow [24.789118651720045]
光実写シーンを用いた自律走行シミュレータを提案する。
シミュレータはROS2またはSocket.IOを介して外部アルゴリズムと通信することができる。
シミュレータ内に高精度な車両力学モデルを実装し,車体効果の現実性を高める。
論文 参考訳(メタデータ) (2024-01-28T23:26:15Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
我々は、オフロード自動運転の視覚的現実的ギャップを横断するRCANを再想像するSim2Segを紹介する。
これは、ランダム化されたシミュレーション画像をシミュレートされたセグメンテーションと深さマップに変換する学習によって行われる。
これにより、シミュレーションでエンドツーエンドのRLポリシーをトレーニングし、現実世界に直接デプロイできます。
論文 参考訳(メタデータ) (2022-10-25T17:50:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
GeoSimは、新しい都市の運転シーンを合成するジオメトリ認識の画像合成プロセスです。
まず、センサーデータからリアルな形状と外観の両方を備えた多様な3Dオブジェクトのバンクを構築します。
得られた合成画像は、フォトリアリズム、トラフィック認識、幾何学的一貫性があり、画像シミュレーションが複雑なユースケースにスケールできる。
論文 参考訳(メタデータ) (2021-01-16T23:00:33Z) - SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving [27.948417322786575]
本稿では,現実的なシナリオセンサデータを生成するための,シンプルで効果的な手法を提案する。
われわれのアプローチでは、テクスチャマップされたサーフを使用して、初期車両のパスやセットのパスからシーンを効率的に再構築する。
次に、SurfelGANネットワークを利用して、現実的なカメライメージを再構築し、自動運転車の新たな位置と方向を推定する。
論文 参考訳(メタデータ) (2020-05-08T04:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。