FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework
for Robust Solar Power Forecasting
- URL: http://arxiv.org/abs/2402.05823v1
- Date: Thu, 8 Feb 2024 17:03:10 GMT
- Title: FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework
for Robust Solar Power Forecasting
- Authors: Ziqing Ma, Wenwei Wang, Tian Zhou, Chao Chen, Bingqing Peng, Liang
Sun, Rong Jin
- Abstract summary: We propose a multi-modality fusion framework to integrate historical power data, numerical weather prediction, and satellite images.
Our framework demonstrates strong zero-shot forecasting capability, which is especially useful for those newly installed plants.
Our model not only operates with robustness but also boosts accuracy in both zero-shot forecasting and scenarios rich with training data, surpassing leading models.
- Score: 24.57911612111109
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate solar power forecasting is crucial to integrate photovoltaic plants
into the electric grid, schedule and secure the power grid safety. This problem
becomes more demanding for those newly installed solar plants which lack
sufficient data. Current research predominantly relies on historical solar
power data or numerical weather prediction in a single-modality format,
ignoring the complementary information provided in different modalities. In
this paper, we propose a multi-modality fusion framework to integrate
historical power data, numerical weather prediction, and satellite images,
significantly improving forecast performance. We introduce a vector quantized
framework that aligns modalities with varying information densities, striking a
balance between integrating sufficient information and averting model
overfitting. Our framework demonstrates strong zero-shot forecasting
capability, which is especially useful for those newly installed plants.
Moreover, we collect and release a multi-modal solar power (MMSP) dataset from
real-world plants to further promote the research of multi-modal solar
forecasting algorithms. Our extensive experiments show that our model not only
operates with robustness but also boosts accuracy in both zero-shot forecasting
and scenarios rich with training data, surpassing leading models. We have
incorporated it into our eForecaster platform and deployed it for more than 300
solar plants with a capacity of over 15GW.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe [0.0]
SolNet is a novel, general-purpose, multivariate solar power forecaster.
We show that SolNet improves forecasting performance over data-scarce settings.
We provide guidelines and considerations for transfer learning practitioners.
arXiv Detail & Related papers (2024-05-23T12:00:35Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting [70.54920804222031]
We propose a general probabilistic multi-view forecasting framework CAMul.
It can learn representations and uncertainty from diverse data sources.
It integrates the knowledge and uncertainty from each data view in a dynamic context-specific manner.
We show that CAMul outperforms other state-of-art probabilistic forecasting models by over 25% in accuracy and calibration.
arXiv Detail & Related papers (2021-09-15T17:13:47Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.