Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates
- URL: http://arxiv.org/abs/2402.05980v3
- Date: Wed, 12 Feb 2025 15:40:35 GMT
- Title: Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates
- Authors: Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, Somesh Jha,
- Abstract summary: Large Language Models' success on text generation has also made them better at code generation and coding tasks.
We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs.
- Score: 32.93686693752635
- License:
- Abstract: Large Language Models' success on text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
Related papers
- VisualCoder: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning [10.70881967278009]
We introduce VisualCoder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought snippets (CoT) reasoning with a visual Control Flow Graph (CFG)
We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
arXiv Detail & Related papers (2024-10-30T19:07:01Z) - DeepCodeProbe: Towards Understanding What Models Trained on Code Learn [13.135962181354465]
We introduce DeepCodeProbe, a probing approach that examines the syntax and representation learning abilities of ML models.
Our study applies DeepCodeProbe to state-of-the-art models for code clone detection, code summarization, and comment generation.
Findings reveal that while small models capture abstract syntactic representations, their ability to fully grasp programming language syntax is limited.
arXiv Detail & Related papers (2024-07-11T23:16:44Z) - Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models [12.959392500354223]
We pioneer the transfer of knowledge from pre-trained code generation models to code understanding tasks.
We introduce CL4D, a contrastive learning method designed to enhance the representation capabilities of decoder-only models.
arXiv Detail & Related papers (2024-06-18T06:52:14Z) - Code Representation Learning At Scale [75.04686476303436]
We fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme.
We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language.
We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner.
arXiv Detail & Related papers (2024-02-02T22:19:15Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
We aim to answer whether making code easier to understand through using contextual data improves the performance of pre-trained code language models for the task of code completion.
For comments, we find that the models perform better in the presence of multi-line comments.
arXiv Detail & Related papers (2023-04-24T17:09:14Z) - Toward a Theory of Causation for Interpreting Neural Code Models [49.906221295459275]
This paper introduces $do_code$, a post hoc interpretability method specific to Neural Code Models (NCMs)
$do_code$ is based upon causal inference to enable language-oriented explanations.
Results show that our studied NCMs are sensitive to changes in code syntax.
arXiv Detail & Related papers (2023-02-07T22:56:58Z) - Contrastive Learning for Source Code with Structural and Functional
Properties [66.10710134948478]
We present BOOST, a novel self-supervised model to focus pre-training based on the characteristics of source code.
We employ automated, structure-guided code transformation algorithms that generate functionally equivalent code that looks drastically different from the original one.
We train our model in a way that brings the functionally equivalent code closer and distinct code further through a contrastive learning objective.
arXiv Detail & Related papers (2021-10-08T02:56:43Z) - Can Machines Read Coding Manuals Yet? -- A Benchmark for Building Better
Language Models for Code Understanding [3.98345038769576]
We derive a set of benchmarks that assess code understanding based on tasks such as predicting the best answer to a question in a forum post.
We evaluate the performance of current state-of-the-art language models on these tasks and show that there is a significant improvement on each task from fine tuning.
arXiv Detail & Related papers (2021-09-15T17:42:44Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.