論文の概要: DeAL: Decoding-time Alignment for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.06147v2
- Date: Wed, 21 Feb 2024 02:25:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 19:03:26.127864
- Title: DeAL: Decoding-time Alignment for Large Language Models
- Title(参考訳): DeAL: 大規模言語モデルのデコード時アライメント
- Authors: James Y. Huang, Sailik Sengupta, Daniele Bonadiman, Yi-an Lai, Arshit
Gupta, Nikolaos Pappas, Saab Mansour, Katrin Kirchhoff, Dan Roth
- Abstract要約: 大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
本稿では,報酬関数をカスタマイズ可能なフレームワークであるDeALを提案し,LLMのDetime Alignmentを可能にする。
実験の結果,粒度の細かいトレードオフでDeALを実現できること,アライメント目標への適合性の向上,LLMの残差の解消が可能であることがわかった。
- 参考スコア(独自算出の注目度): 59.63643988872571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are nowadays expected to generate content
aligned with human preferences. Current work focuses on alignment at model
training time, through techniques such as Reinforcement Learning with Human
Feedback (RLHF). However, it is unclear if such methods are an effective choice
to teach alignment objectives to the model. First, the inability to incorporate
multiple, custom rewards and reliance on a model developer's view of universal
and static principles are key limitations. Second, the residual gaps in model
training and the reliability of such approaches are also questionable (e.g.
susceptibility to jail-breaking even after safety training). To address these,
we propose DeAL, a framework that allows the user to customize reward functions
and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view
decoding as a heuristic-guided search process and facilitate the use of a wide
variety of alignment objectives. Our experiments with programmatic constraints
such as keyword and length constraints (studied widely in the pre-LLM era) and
abstract objectives such as harmlessness and helpfulness (proposed in the
post-LLM era) show that we can DeAL with fine-grained trade-offs, improve
adherence to alignment objectives, and address residual gaps in LLMs. Lastly,
while DeAL can be effectively paired with RLHF and prompting techniques, its
generality makes decoding slower, an optimization we leave for future work.
- Abstract(参考訳): 大規模言語モデル(LLM)は現在、人間の好みに沿ったコンテンツを生成することが期待されている。
現在の研究は、Reinforcement Learning with Human Feedback (RLHF)のようなテクニックを通じて、モデルトレーニング時のアライメントに焦点を当てている。
しかし、そのような手法がモデルにアライメント目的を教える効果的な選択であるかどうかは不明である。
まず、モデル開発者の普遍的原則と静的原則に対する見解に、複数のカスタム報酬と依存を組み込むことができないことが、重要な制限です。
第二に、モデル訓練における残留ギャップとそのようなアプローチの信頼性も疑わしい(例えば、安全訓練の後でさえ、脱獄の危険性)。
そこで本稿では,報酬関数をカスタマイズし,LLM(Decode-time Alignment of LLM)を実現するためのフレームワークであるDeALを提案する。
その核となるのは、デコーディングをヒューリスティックなガイド付き検索プロセスとして捉え、幅広いアライメント目標の使用を促進することです。
キーワードや長さの制約(LLM前において広く研究されている)や無害性や援助性(LLM後)といった抽象的な目的(LLM後)を用いた実験は、細粒度のトレードオフでDeALが可能であり、アライメント目的への適合性を改善し、LCMの残差に対処できることを示している。
最後に、DeALはRLHFと効果的に組み合わせて技法を推進できるが、その一般化によってデコードが遅くなり、将来の作業に向け最適化される。
関連論文リスト
- Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control [44.326363467045496]
大規模言語モデル(LLM)は、ヒューマンフィードバック(RLHF)からの強化学習において重要な研究領域となっている。
表現工学は、新しい、トレーニングなしのアプローチを提供する。
この手法は意味的特徴を利用してLLMの中間隠れ状態の表現を制御する。
正直さや安全性などの様々な意味内容を特異な意味的特徴に符号化することは困難である。
論文 参考訳(メタデータ) (2024-11-04T08:36:03Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL [14.091146805312636]
信用割当問題は強化学習(RL)における中心的な課題である
クレジット・アサインメント・ウィズ・ランゲージ・モデル(CALM)は、報酬形成とオプション発見を通じてクレジット・アサインメントを自動化する新しいアプローチである。
予備的な結果は、大規模言語モデルの知識が、RLにおける信用代入の有望な先行であることを示している。
論文 参考訳(メタデータ) (2024-09-19T14:08:09Z) - Aligning Large Language Models with Representation Editing: A Control Perspective [38.71496554018039]
人間の目的に合わせて微調整された大規模言語モデル(LLM)は、現実世界のアプリケーションには不可欠である。
プロンプトやガイドデコードといったテスト時のアライメント技術は、基礎となるモデルを変更しない。
表現編集によるLLMの整合性を提案する。
論文 参考訳(メタデータ) (2024-06-10T01:21:31Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
本稿では,制約付きアライメントを等価な非制約アライメント問題に還元する双対化の観点を提案する。
我々は、閉形式を持つ滑らかで凸な双対函数を事前に最適化する。
我々の戦略は、モデルベースと嗜好ベースの設定における2つの実用的なアルゴリズムに導かれる。
論文 参考訳(メタデータ) (2024-05-29T22:12:52Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。