論文の概要: DeAL: Decoding-time Alignment for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.06147v3
- Date: Sun, 12 Oct 2025 07:05:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:29.468975
- Title: DeAL: Decoding-time Alignment for Large Language Models
- Title(参考訳): DeAL: 大規模言語モデルのデコード時アライメント
- Authors: James Y. Huang, Sailik Sengupta, Daniele Bonadiman, Yi-An Lai, Arshit Gupta, Nikolaos Pappas, Saab Mansour, Katrin Kirchhoff, Dan Roth,
- Abstract要約: 大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
我々は,報酬関数をカスタマイズし,LLMの復号時間アライメントを可能にするフレームワークであるDeALを提案する。
- 参考スコア(独自算出の注目度): 58.368979253590794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences. Current work focuses on alignment at model training time, through techniques such as Reinforcement Learning with Human Feedback (RLHF). However, it is unclear if such methods are an effective choice to teach alignment objectives to the model. First, the inability to incorporate multiple, custom rewards and reliance on a model developer's view of universal and static principles are key limitations. Second, the reliability of such approaches is also questionable (e.g. susceptibility to jailbreaking even after safety training). To address these issues, we propose DeAL, a framework that allows the user to customize reward functions and enables Decoding-time Alignment of LLMs (DeAL). At its core, we view decoding as a heuristic-guided search process and facilitate the use of a wide variety of alignment objectives. Our experiments with programmatic constraints such as keyword and length constraints, and abstract objectives such as harmlessness and helpfulness, show that we can DeAL with fine-grained trade-offs and improve adherence to alignment objectives. Lastly, we demonstrate that DeAL is largely complementary to existing alignment strategies, and can be effectively paired with RLHF and prompting techniques to achieve better alignment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、現在、人間の好みに沿ったコンテンツを生成することが期待されている。
現在の研究は、Reinforcement Learning with Human Feedback (RLHF)のようなテクニックを通じて、モデルトレーニング時のアライメントに焦点を当てている。
しかし、そのような手法がモデルにアライメントの目的を教える効果的な選択であるかどうかは不明である。
まず、モデル開発者の普遍的原則と静的原則に対する見解に、複数のカスタム報酬と依存を組み込むことができないことが、重要な制限です。
第二に、このようなアプローチの信頼性も疑問視されている(例えば、安全訓練後のジェイルブレイクに対する感受性)。
これらの問題に対処するため,ユーザが報酬関数をカスタマイズし,LLM(Decode-time Alignment of LLM)を実現するためのフレームワークであるDeALを提案する。
その中核となるのは、復号化をヒューリスティック誘導探索プロセスとみなし、多種多様なアライメント目的の活用を容易にすることである。
キーワードや長さの制約などのプログラム的制約や、無害性や助け合いといった抽象的な目的を用いた実験は、粒度の細かいトレードオフをDeALで実現し、目的の整合性を改善することを示します。
最後に,DeALは既存のアライメント戦略をほぼ補完するもので,RLHFと効果的に組み合わせて,アライメントを向上するためのテクニックを推進できることを実証する。
関連論文リスト
- Large Language Model Unlearning for Source Code [65.42425213605114]
PRODは、LLMがコード生成能力を保ちながら、望ましくないコード内容を忘れることができる新しいアンラーニングアプローチである。
本評価は,既存の未学習アプローチと比較して,忘れ品質とモデルユーティリティのバランスが良好であることを示す。
論文 参考訳(メタデータ) (2025-06-20T16:27:59Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - Evaluating the Paperclip Maximizer: Are RL-Based Language Models More Likely to Pursue Instrumental Goals? [33.11148546999906]
主な関心事は、テキスト構造収束(textitinstrumental convergence)である。AIシステムは、究極の目標を覆い、人間の意図した目標から逸脱する意図しない中間目標を開発する。
この問題は特に強化学習(RL)訓練モデルに関係しており、報酬を最大化するために創造的だが意図しない戦略を生成することができる。
また,RL駆動モデルでは,目標指向行動の最適化が人間の意図に反する可能性があるため,楽器収束の傾向が強いことを示す。
論文 参考訳(メタデータ) (2025-02-16T16:29:20Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Enhancing Multiple Dimensions of Trustworthiness in LLMs via Sparse Activation Control [44.326363467045496]
大規模言語モデル(LLM)は、ヒューマンフィードバック(RLHF)からの強化学習において重要な研究領域となっている。
表現工学は、新しい、トレーニングなしのアプローチを提供する。
この手法は意味的特徴を利用してLLMの中間隠れ状態の表現を制御する。
正直さや安全性などの様々な意味内容を特異な意味的特徴に符号化することは困難である。
論文 参考訳(メタデータ) (2024-11-04T08:36:03Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
理論的に健全で高性能な単純なCL法を設計することで,このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL [14.091146805312636]
信用割当問題は強化学習(RL)における中心的な課題である
クレジット・アサインメント・ウィズ・ランゲージ・モデル(CALM)は、報酬形成とオプション発見を通じてクレジット・アサインメントを自動化する新しいアプローチである。
予備的な結果は、大規模言語モデルの知識が、RLにおける信用代入の有望な先行であることを示している。
論文 参考訳(メタデータ) (2024-09-19T14:08:09Z) - Aligning Large Language Models with Representation Editing: A Control Perspective [38.71496554018039]
人間の目的に合わせて微調整された大規模言語モデル(LLM)は、現実世界のアプリケーションには不可欠である。
プロンプトやガイドデコードといったテスト時のアライメント技術は、基礎となるモデルを変更しない。
表現編集によるLLMの整合性を提案する。
論文 参考訳(メタデータ) (2024-06-10T01:21:31Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
本稿では,制約付きアライメントを等価な非制約アライメント問題に還元する双対化の観点を提案する。
我々は、閉形式を持つ滑らかで凸な双対函数を事前に最適化する。
我々の戦略は、モデルベースと嗜好ベースの設定における2つの実用的なアルゴリズムに導かれる。
論文 参考訳(メタデータ) (2024-05-29T22:12:52Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。