論文の概要: The Generative AI Paradox on Evaluation: What It Can Solve, It May Not
Evaluate
- arxiv url: http://arxiv.org/abs/2402.06204v1
- Date: Fri, 9 Feb 2024 06:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 17:53:40.964739
- Title: The Generative AI Paradox on Evaluation: What It Can Solve, It May Not
Evaluate
- Title(参考訳): ジェネレーティブAIによる評価のパラドックス:解決できること、評価しないかもしれない
- Authors: Juhyun Oh, Eunsu Kim, Inha Cha, Alice Oh
- Abstract要約: 本稿では,ジェネレーションタスクにおけるLarge Language Models (LLMs) が同等に評価できるという仮定を考察する。
質問応答(QA)における3つのLLMと1つのオープンソースLMの性能評価と,TriviaQAデータセットを用いた評価課題について述べる。
- 参考スコア(独自算出の注目度): 17.77014177096838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the assumption that Large Language Models (LLMs) skilled
in generation tasks are equally adept as evaluators. We assess the performance
of three LLMs and one open-source LM in Question-Answering (QA) and evaluation
tasks using the TriviaQA (Joshi et al., 2017) dataset. Results indicate a
significant disparity, with LLMs exhibiting lower performance in evaluation
tasks compared to generation tasks. Intriguingly, we discover instances of
unfaithful evaluation where models accurately evaluate answers in areas where
they lack competence, underscoring the need to examine the faithfulness and
trustworthiness of LLMs as evaluators. This study contributes to the
understanding of "the Generative AI Paradox" (West et al., 2023), highlighting
a need to explore the correlation between generative excellence and evaluation
proficiency, and the necessity to scrutinize the faithfulness aspect in model
evaluations.
- Abstract(参考訳): 本稿では,ジェネレーションタスクにおけるLarge Language Models (LLMs) が同等に評価できるという仮定を考察する。
質問応答(QA)における3つのLCMと1つのオープンソースLMの性能評価と,TriviaQA(Joshi et al., 2017)データセットを用いた評価課題について述べる。
その結果,LLMは生成タスクに比べて評価タスクの性能が低いことが示唆された。
興味深いことに、LLMの信頼性と信頼性を評価対象とすることの必要性を強調し、能力に欠ける領域でモデルが正確に回答を評価する不誠実な評価の事例を見出した。
本研究は「生成的aiパラドックス」(west et al., 2023)の理解に寄与し、生成的卓越性と評価能力の相関性、およびモデル評価における忠実性側面の精査の必要性を浮き彫りにした。
関連論文リスト
- Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles [20.18736445118689]
SPLATは,Large Language Models (LLMs) の側方的思考を評価・引き起こすためのコンディションパズルを利用したベンチマークである。
このベンチマークは、3つの難易度で975グレードのシチュエーションパズルを含むもので、従来のモデルに基づく評価ではなく、新しいマルチターンプレーヤジャッジフレームワークを採用している。
実験により、WizardLM-2のような頑健な評価モデルが、中間質問回答と最終シナリオの精度の両方において、人間の判断と密接に一致していることが示されている。
論文 参考訳(メタデータ) (2024-10-09T10:09:11Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
本研究では,大規模言語モデル(LLM),特にGPT-4の可能性を探り,組織的タスクパフォーマンス評価における客観性を高める。
以上の結果から,GPT評価は人間の評価に匹敵するが,一貫性と信頼性が高いことが示唆された。
LLMはテキストベースのデータから意味のある構成物を抽出できるが、その範囲は特定のパフォーマンス評価形式に限定されている。
論文 参考訳(メタデータ) (2024-08-09T20:35:10Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
人間の判断の代わりにLPMを用いてNLPモデルを評価する傾向が高まっている。
JUDGE-BENCHは20個のNLPデータセットのコレクションで、人間のアノテーションで、幅広い評価された特性やデータの種類をカバーしています。
アノテーションを複製できるため、オープンウェイトモデルとプロプライエタリモデルの両方をカバーする11の現在のLCMを評価します。
論文 参考訳(メタデータ) (2024-06-26T14:56:13Z) - Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
テキスト生成タスクにおける評価器として,Large Language Models (LLMs) の有効性を検討する。
我々は,4つの重要な能力を評価する上で,評価用LLMの習熟度を評価するための新しいフレームワークであるFBIを提案する。
論文 参考訳(メタデータ) (2024-06-19T10:59:48Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
質問への回答、質問、評価は、世界を理解し、知識を得るのに不可欠な3つの人間の特性である。
現在のMLLM(Multimodal Large Language Models)は主に質問応答に焦点を当てており、質問や評価スキルの可能性を無視することが多い。
LOVA3は、"Learning tO Visual Question Answering, Asking and Assessment"と名付けられた革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-05-23T18:21:59Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - LLMs as Narcissistic Evaluators: When Ego Inflates Evaluation Scores [23.568883428947494]
本研究は,LMに基づく評価指標が,要約タスクの文脈において,それぞれの基盤となるLMに対して有利なバイアスを示すかどうかを考察する。
以上の結果から, 金のサマリーを活用せずに, 基準のない手法で評価指標を用いた場合, 特に有意なバイアスがみられた。
これらの結果は、生成的評価モデルによって提供される評価は、本質的なテキスト品質を超える要因に影響される可能性があることを裏付けている。
論文 参考訳(メタデータ) (2023-11-16T10:43:26Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。