論文の概要: Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games
- arxiv url: http://arxiv.org/abs/2504.12333v1
- Date: Sun, 13 Apr 2025 10:46:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:33.993934
- Title: Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games
- Title(参考訳): ローカルLLMのメタ評価 - シリアスゲームのパフォーマンス指標の再考
- Authors: Andrés Isaza-Giraldo, Paulo Bala, Lucas Pereira,
- Abstract要約: 大規模言語モデル (LLMs) は、真剣なゲームにおける評価指標としてますます研究されている。
本研究では,エネルギーコミュニティにおける意思決定をシミュレートするゲームであるtextitEn-join において,5つの小規模 LLM の信頼性について検討した。
その結果、各モデルの長所と短所を強調し、感度、特異性、全体的なパフォーマンスのトレードオフを明らかにした。
- 参考スコア(独自算出の注目度): 3.725822359130832
- License:
- Abstract: The evaluation of open-ended responses in serious games presents a unique challenge, as correctness is often subjective. Large Language Models (LLMs) are increasingly being explored as evaluators in such contexts, yet their accuracy and consistency remain uncertain, particularly for smaller models intended for local execution. This study investigates the reliability of five small-scale LLMs when assessing player responses in \textit{En-join}, a game that simulates decision-making within energy communities. By leveraging traditional binary classification metrics (including accuracy, true positive rate, and true negative rate), we systematically compare these models across different evaluation scenarios. Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance. We demonstrate that while some models excel at identifying correct responses, others struggle with false positives or inconsistent evaluations. The findings highlight the need for context-aware evaluation frameworks and careful model selection when deploying LLMs as evaluators. This work contributes to the broader discourse on the trustworthiness of AI-driven assessment tools, offering insights into how different LLM architectures handle subjective evaluation tasks.
- Abstract(参考訳): 真剣なゲームにおけるオープンエンド応答の評価は、正しさが主観的であることが多いため、独特な課題である。
大規模言語モデル(LLM)は、そのような文脈での評価器としてますます研究されているが、その正確さと一貫性は、特に局所的な実行を意図したより小さなモデルでは、不確かである。
本研究では,エネルギーコミュニティ内での意思決定をシミュレートするゲームである『textit{En-join}』において,プレイヤーの反応を評価する際の5つの小型LCMの信頼性について検討した。
従来のバイナリ分類メトリクス(精度、真の正の率、真の負のレートを含む)を活用することで、これらのモデルを異なる評価シナリオで体系的に比較する。
その結果、各モデルの長所と短所を強調し、感度、特異性、全体的なパフォーマンスのトレードオフを明らかにした。
正しい応答の同定に優れるモデルもあれば、偽陽性や矛盾した評価に苦戦するモデルもある。
この結果から,LLMを評価対象としてデプロイする際の文脈対応評価フレームワークの必要性と,モデル選択の慎重さが浮き彫りになった。
この研究は、AI駆動評価ツールの信頼性に関する幅広い議論に寄与し、異なるLLMアーキテクチャが主観評価タスクをどのように扱うかについての洞察を提供する。
関連論文リスト
- Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
大きな言語モデル(LLM)は、真の言語理解と適応性を示すのに失敗しながら、標準化されたテストで優れている。
NLP評価フレームワークの系統的解析により,評価スペクトルにまたがる広範囲にわたる脆弱性が明らかになった。
我々は、操作に抵抗し、データの汚染を最小限に抑え、ドメイン固有のタスクを評価する新しい評価方法の土台を築いた。
論文 参考訳(メタデータ) (2024-12-02T20:49:21Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - TALEC: Teach Your LLM to Evaluate in Specific Domain with In-house Criteria by Criteria Division and Zero-shot Plus Few-shot [2.186726107112913]
本稿では,モデルに基づく評価手法 TALEC を提案する。
ユーザは自分の評価基準を柔軟に設定でき、インコンテキストラーニング(ICL)を使って審査員にこれらの評価基準を教えることができる。
TALECは人間の嗜好を正確に反映する強力な能力を示し、人間の判断と80%以上の相関を達成している。
論文 参考訳(メタデータ) (2024-06-25T10:02:42Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
本研究では,大規模言語モデル(LLM)とともに,クラウドソースおよびエキスパートアノテータの挙動について検討する。
この結果から, 事実的誤りに対する回答は, 短すぎる, 文法的誤りを含む回答よりも好意的に評価され, 評価過程の偏りが示唆された。
評価面を1つのスコアにマージするのではなく,複数の次元にまたがるマシン生成テキストを独立に評価することを提案する。
論文 参考訳(メタデータ) (2023-07-06T14:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。