Improving the Worst-Case Bidirectional Communication Complexity for Nonconvex Distributed Optimization under Function Similarity
- URL: http://arxiv.org/abs/2402.06412v2
- Date: Sat, 02 Nov 2024 18:54:03 GMT
- Title: Improving the Worst-Case Bidirectional Communication Complexity for Nonconvex Distributed Optimization under Function Similarity
- Authors: Kaja Gruntkowska, Alexander Tyurin, Peter Richtárik,
- Abstract summary: We introduce MARINA-P, a novel method for downlink compression, employing a collection of correlated compressors.
We show that MARINA-P with permutation compressors can achieve a server-to-worker communication complexity improving with the number of workers.
We introduce M3, a method combining MARINA-P with uplink compression and a momentum step, achieving bidirectional compression with provable improvements in total communication complexity as the number of workers increases.
- Score: 92.1840862558718
- License:
- Abstract: Effective communication between the server and workers plays a key role in distributed optimization. In this paper, we focus on optimizing the server-to-worker communication, uncovering inefficiencies in prevalent downlink compression approaches. Considering first the pure setup where the uplink communication costs are negligible, we introduce MARINA-P, a novel method for downlink compression, employing a collection of correlated compressors. Theoretical analyses demonstrates that MARINA-P with permutation compressors can achieve a server-to-worker communication complexity improving with the number of workers, thus being provably superior to existing algorithms. We further show that MARINA-P can serve as a starting point for extensions such as methods supporting bidirectional compression. We introduce M3, a method combining MARINA-P with uplink compression and a momentum step, achieving bidirectional compression with provable improvements in total communication complexity as the number of workers increases. Theoretical findings align closely with empirical experiments, underscoring the efficiency of the proposed algorithms.
Related papers
- Lower Bounds and Accelerated Algorithms in Distributed Stochastic
Optimization with Communication Compression [31.107056382542417]
Communication compression is an essential strategy for alleviating communication overhead.
We propose NEOLITHIC, a nearly optimal algorithm for compression under mild conditions.
arXiv Detail & Related papers (2023-05-12T17:02:43Z) - 3PC: Three Point Compressors for Communication-Efficient Distributed
Training and a Better Theory for Lazy Aggregation [12.013162443721312]
We propose a new class of gradient communication mechanisms for communication-efficient training.
We show that our approach can recover the recently proposed state-of-the-art error feedback mechanism EF21.
We provide a new fundamental link between the lazy aggregation and error feedback literature.
arXiv Detail & Related papers (2022-02-02T12:34:18Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - Decentralized Composite Optimization with Compression [36.75785129001134]
We study the decentralized composite optimization problem with a potentially non-smooth component.
A convergent underlineDecentralized algorithm with compression, Prox-LEAD, is proposed.
Our theorems indicate that Prox-LEAD works with arbitrary compression precision, and it tremendously reduces the communication cost almost for free.
arXiv Detail & Related papers (2021-08-10T04:54:52Z) - Innovation Compression for Communication-efficient Distributed
Optimization with Linear Convergence [23.849813231750932]
This paper proposes a communication-efficient linearly convergent distributed (COLD) algorithm to solve strongly convex optimization problems.
By compressing innovation vectors, COLD is able to achieve linear convergence for a class of $delta$-contracted compressors.
Numerical experiments demonstrate the advantages of both algorithms under different compressors.
arXiv Detail & Related papers (2021-05-14T08:15:18Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
Decentralized optimization methods enable on-device training of machine learning models without a central coordinator.
We propose a new randomized first-order method which tackles the communication bottleneck by applying randomized compression operators.
We prove that our method can solve the problems without any increase in the number of communications compared to the baseline.
arXiv Detail & Related papers (2020-11-03T13:35:53Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z) - Linear Convergent Decentralized Optimization with Compression [50.44269451541387]
Existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms.
Motivated by primal-dual algorithms, this paper proposes first underlineLinunderlineEAr convergent.
underlineDecentralized with compression, LEAD.
arXiv Detail & Related papers (2020-07-01T04:35:00Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.