MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
- URL: http://arxiv.org/abs/2412.17082v1
- Date: Sun, 22 Dec 2024 16:18:34 GMT
- Title: MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes
- Authors: Igor Sokolov, Peter Richtárik,
- Abstract summary: We extend the non-smooth convex theory of EF21-P (Anonymous 2024) and MARINA-P (arXiv:2402.06412) in the non-size convex setting.
We provide theoretical guarantees under constant, decreasing, and adaptive (aktypetype) steps.
- Score: 57.24311218570012
- License:
- Abstract: Non-smooth communication-efficient federated optimization is crucial for many machine learning applications, yet remains largely unexplored theoretically. Recent advancements have primarily focused on smooth convex and non-convex regimes, leaving a significant gap in understanding the non-smooth convex setting. Additionally, existing literature often overlooks efficient server-to-worker communication (downlink), focusing primarily on worker-to-server communication (uplink). We consider a setup where uplink costs are negligible and focus on optimizing downlink communication by improving state-of-the-art schemes like EF21-P (arXiv:2209.15218) and MARINA-P (arXiv:2402.06412) in the non-smooth convex setting. We extend the non-smooth convex theory of EF21-P [Anonymous, 2024], originally developed for single-node scenarios, to the distributed setting, and extend MARINA-P to the non-smooth convex setting. For both algorithms, we prove an optimal $O(1/\sqrt{T})$ convergence rate and establish communication complexity bounds matching classical subgradient methods. We provide theoretical guarantees under constant, decreasing, and adaptive (Polyak-type) stepsizes. Our experiments demonstrate that MARINA-P with correlated compressors outperforms other methods in both smooth non-convex and non-smooth convex settings. This work presents the first theoretical results for distributed non-smooth optimization with server-to-worker compression, along with comprehensive analysis for various stepsize schemes.
Related papers
- Smoothed Normalization for Efficient Distributed Private Optimization [54.197255548244705]
Federated learning enables machine learning models with privacy of participants.
There is no differentially private distributed method for training, non-feedback problems.
We introduce a new distributed algorithm $alpha$-$sf NormEC$ with provable convergence guarantees.
arXiv Detail & Related papers (2025-02-19T07:10:32Z) - Double Momentum and Error Feedback for Clipping with Fast Rates and Differential Privacy [11.356444450240799]
existing algorithms do not achieve Strong Differential Privacy (DP) and Optimization guarantees at once.
We propose a new method called Clip21-SGD2M based on a novel combination of clipping, heavy-ball momentum, and Error Feedback.
arXiv Detail & Related papers (2025-02-17T11:16:21Z) - Decentralized Projection-free Online Upper-Linearizable Optimization with Applications to DR-Submodular Optimization [29.705337940879705]
We introduce a novel framework for decentralized projection-free optimization.
We leverage decentralized optimization techniques with the flexibility of upper-linearizable function frameworks.
arXiv Detail & Related papers (2025-01-30T07:28:34Z) - Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy [47.997934291881414]
Existing mean estimation schemes are usually optimized for $L_infty$ geometry and rely on random rotation or Kashin's representation to adapt to $L$ geometry.
We introduce a novel privacy accounting method for the sparsified Gaussian mechanism that incorporates the randomness inherent in sparsification into the DP.
Unlike previous approaches, our accounting algorithm directly operates in $L$ geometry, yielding MSEs that fast converge to those of the Gaussian mechanism.
arXiv Detail & Related papers (2024-05-02T03:48:47Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm, dubbed ALEXR.
We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.
We present lower complexity bounds to demonstrate that the convergence rates of ALEXR are optimal among first-order block-coordinate algorithms for the considered class of cFCCO problems.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - Asymmetrically Decentralized Federated Learning [22.21977974314497]
Decentralized Federated Learning (DFL) has emerged, which discards the server with a peer-to-peer (P2P) communication framework.
This paper proposes DFedSGPSM algorithm, which is based on asymmetric topologies and utilizes the Push- Aware protocol.
arXiv Detail & Related papers (2023-10-08T09:46:26Z) - Preconditioned Federated Learning [7.7269332266153326]
Federated Learning (FL) is a distributed machine learning approach that enables model training in communication efficient and privacy-preserving manner.
FedAvg has been considered to lack algorithm adaptivity compared to modern first-order adaptive optimizations.
We propose new communication-efficient FL algortithms based on two adaptive frameworks: local adaptivity (PreFed) and server-side adaptivity (PreFedOp)
arXiv Detail & Related papers (2023-09-20T14:58:47Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.