論文の概要: Explaining Veracity Predictions with Evidence Summarization: A
Multi-Task Model Approach
- arxiv url: http://arxiv.org/abs/2402.06443v1
- Date: Fri, 9 Feb 2024 14:39:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 16:41:11.196654
- Title: Explaining Veracity Predictions with Evidence Summarization: A
Multi-Task Model Approach
- Title(参考訳): Evidence Summarizationによる精度予測の解説:マルチタスクモデルアプローチ
- Authors: Recep Firat Cekinel and Pinar Karagoz
- Abstract要約: 誤情報検出のためのマルチタスク説明可能なニューラルモデルを提案する。
具体的には、本研究は、テキスト要約問題としてモデルの妥当性予測の説明生成過程を定式化する。
提案モデルの性能を公開データセットで検討し,関連する研究結果と比較した。
- 参考スコア(独自算出の注目度): 1.223779595809275
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid dissemination of misinformation through social media increased the
importance of automated fact-checking. Furthermore, studies on what deep neural
models pay attention to when making predictions have increased in recent years.
While significant progress has been made in this field, it has not yet reached
a level of reasoning comparable to human reasoning. To address these gaps, we
propose a multi-task explainable neural model for misinformation detection.
Specifically, this work formulates an explanation generation process of the
model's veracity prediction as a text summarization problem. Additionally, the
performance of the proposed model is discussed on publicly available datasets
and the findings are evaluated with related studies.
- Abstract(参考訳): ソーシャルメディアによる誤報の急速な普及は、自動事実確認の重要性を高めた。
さらに,近年では,ディープニューラルモデルが予測にどのような注意を払っているかが注目されている。
この分野では大きな進歩を遂げているが、人間の推論に匹敵するレベルの推論には達していない。
これらのギャップに対処するために,誤情報検出のためのマルチタスク説明可能なニューラルモデルを提案する。
具体的には,テキスト要約問題として,モデルの妥当性予測の説明生成過程を定式化する。
また,提案モデルの性能を公開データセット上で議論し,関連する研究により評価した。
関連論文リスト
- Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Explaining Hate Speech Classification with Model Agnostic Methods [0.9990687944474738]
本研究の目的は、ヘイトスピーチ予測と、その決定を支援するためにシステムによって生成された説明とのギャップを埋めることである。
これは、まずテキストの分類を予測し、その後、ポストホック、モデル非依存、代理的解釈可能性アプローチを提供することによって達成されている。
論文 参考訳(メタデータ) (2023-05-30T19:52:56Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - You Can Do Better! If You Elaborate the Reason When Making Prediction [13.658942796267015]
本論文では,大きな学習済み言語モデルと組み合わせた新しいニューラル予測フレームワークを提案し,予測を行い,それに対応する説明を同時に生成する。
中国の医学的複数選択質問応答, 英語自然言語推論, 常識質問回答タスクに関する予備的実証的研究を行った。
また,提案手法は,3つのデータセットに対する予測精度の向上も達成し,意思決定プロセスにおける説明の生成による予測のメリットが示唆された。
論文 参考訳(メタデータ) (2021-03-27T14:55:19Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Learning to Rationalize for Nonmonotonic Reasoning with Distant
Supervision [44.32874972577682]
モデル予測を説明する自然言語の理性について,ニューラルモデルが判断できる範囲について検討する。
トレーニング済みの言語モデル、ニューラルナレッジモデル、関連するタスクからの遠隔監視を使用します。
我々のモデルは、追加情報から推論が多かれ少なかれ起こりそうな理由を説明するポストホック論理を生成することを約束している。
論文 参考訳(メタデータ) (2020-12-14T23:50:20Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
画像に基づく年齢予測課題における視覚的満足度に基づく説明について検討する。
モデル予測の提示により,人間の精度が向上することが判明した。
しかし、様々な種類の説明は、人間の正確さやモデルの信頼を著しく変えることができない。
論文 参考訳(メタデータ) (2020-07-23T20:39:40Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z) - Uncovering the Data-Related Limits of Human Reasoning Research: An
Analysis based on Recommender Systems [1.7478203318226309]
認知科学は、理論駆動の観点から人間のような知性をモデル化する目的を追求している。
ソロジック推論は人間の推論研究のコアドメインの1つである。
最近のモデルの性能予測の結果、改善の停滞が明らかになった。
論文 参考訳(メタデータ) (2020-03-11T10:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。