Fundamental limits of metrology at thermal equilibrium
- URL: http://arxiv.org/abs/2402.06582v2
- Date: Mon, 11 Nov 2024 21:09:57 GMT
- Title: Fundamental limits of metrology at thermal equilibrium
- Authors: Paolo Abiuso, Pavel Sekatski, John Calsamiglia, Martà Perarnau-Llobet,
- Abstract summary: We consider the estimation of an unknown parameter $theta$ through a quantum probe at thermal equilibrium.
We find the maximal Quantum Fisher Information attainable via arbitrary $Hrm C$, which provides a fundamental bound on the measurement precision.
- Score: 0.0
- License:
- Abstract: We consider the estimation of an unknown parameter $\theta$ through a quantum probe at thermal equilibrium. The probe is assumed to be in a Gibbs state according to its Hamiltonian $H_\theta$, which is divided in a parameter-encoding term $H^{\rm P}_\theta$ and an additional, parameter-independent, control $H^{\rm C}$. Given a fixed encoding, we find the maximal Quantum Fisher Information attainable via arbitrary $H^{\rm C}$, which provides a fundamental bound on the measurement precision. We elucidate the role of quantum coherence between encoding and control in different temperature regimes, which include ground state metrology as a limiting case. In the case of locally-encoded parameters, the optimal sensitivity presents a $N^2$-scaling in terms of the number of particles of the probe, which can be reached, at finite temperature, with local measurements and no entanglement. We apply our results to paradigmatic spin chain models, showing that these fundamental limits can be approached using local two-body interactions. Our results set the fundamental limits and optimal control for metrology with thermal and ground state probes, including probes at the verge of criticality.
Related papers
- Distributed quantum multiparameter estimation with optimal local measurements [0.0]
We study a sensor made by an array of $d$ spatially-distributed Mach-Zehnder interferometers (MZIs)
We show that local measurements, independently performed on each MZI, are sufficient to provide a sensitivity saturating the quantum Cram'er-Rao bound.
We find that the $d$ independent interferometers can achieve the same sensitivity of the entangled protocol but at the cost of using additional $d$ non-classical states.
arXiv Detail & Related papers (2024-05-28T17:45:07Z) - Estimation of Hamiltonian parameters from thermal states [0.0]
We upper- and lower-bound the optimal precision with which one can estimate an unknown Hamiltonian parameter via measurements of Gibbs thermal states with a known temperature.
We show that there exist entangled thermal states such that the parameter can be estimated with an error that decreases faster than $1/sqrtn$, beating the standard quantum limit.
arXiv Detail & Related papers (2024-01-18T19:15:36Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Optimal Thermometers with Spin Networks [0.0]
Heat capacity of a given probe is a fundamental quantity that determines, among other properties, the maximum precision in temperature estimation.
We show analytically to approximate the theoretical maximal value of $mathcalC$ and maintain the optimal scaling for short- and long-range interactions.
Our models can be encoded in currently available quantum annealers, and find application in other tasks requiring Hamiltonian engineering.
arXiv Detail & Related papers (2022-11-03T16:19:27Z) - Distributed quantum sensing with optical lattices [0.0]
In distributed quantum sensing the correlations between multiple modes, typically of a photonic system, are utilized to enhance the measurement precision of an unknown parameter.
We show that it can allow for parameter estimation at the Heisenberg limit of $(N(M-1)T)2$, where $N$ is the number of particles, $M$ is the number of modes, and $T$ is the measurement time.
arXiv Detail & Related papers (2022-08-10T03:47:44Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Optimal nonequilibrium thermometry in Markovian environments [0.0]
We find that for a general class of sample-probe interactions the scaling of the measurement uncertainty is inversely proportional to the time of the process.
We show that the Lamb shift induced by the probe-sample interaction can play a relevant role in thermometry.
arXiv Detail & Related papers (2021-07-09T13:19:42Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.