Quantum control of a single $\mathrm{H}_2^+$ molecular ion
- URL: http://arxiv.org/abs/2409.06495v1
- Date: Tue, 10 Sep 2024 13:22:19 GMT
- Title: Quantum control of a single $\mathrm{H}_2^+$ molecular ion
- Authors: David Holzapfel, Fabian Schmid, Nick Schwegler, Oliver Stadler, Martin Stadler, Alexander Ferk, Jonathan P. Home, Daniel Kienzler,
- Abstract summary: $mathrmH+$ is the simplest stable molecule, and its internal structure is calculable to high precision from first principles.
Standard control methods such as laser cooling, fluorescence detection and optical pumping are not applicable to $mathrmH+$.
We demonstrate full quantum control of a single $mathrmH+$ molecule by co-trapping it with an atomic 'helper' ion.
- Score: 34.82692226532414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Science is founded on the benchmarking of theoretical models against experimental measurements, with the challenge that for all but the simplest systems, the calculations required for high precision become extremely challenging. $\mathrm{H}_2^+$ is the simplest stable molecule, and its internal structure is calculable to high precision from first principles. This allows tests of theoretical models and the determination of fundamental constants. However, studying $\mathrm{H}_2^+$ experimentally presents significant challenges. Standard control methods such as laser cooling, fluorescence detection and optical pumping are not applicable to $\mathrm{H}_2^+$ due to the very long lifetimes of its excited rotational and vibrational states. Here we solve this issue by using Quantum Logic Spectroscopy techniques to demonstrate full quantum control of a single $\mathrm{H}_2^+$ molecule by co-trapping it with an atomic 'helper' ion and performing quantum operations between the two ions. This enables us to perform pure quantum state preparation, coherent control and non-destructive readout, which we use to perform high-resolution microwave spectroscopy of $\mathrm{H}_2^+$. Our results pave the way for high precision spectroscopy of $\mathrm{H}_2^+$ in both the microwave and optical domains, while offering techniques which are transferable to other molecular ions.
Related papers
- Scalable quantum logic spectroscopy [0.0]
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species.
We develop a new technique based on a Schr"odinger cat interferometer to address the problem of scaling QLS to larger ion numbers.
arXiv Detail & Related papers (2022-07-24T16:36:05Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Variational quantum algorithm for molecular geometry optimization [0.0]
We introduce a variational quantum algorithm for finding the most stable structure of a molecule.
The equilibrium geometry of the molecule is obtained by minimizing a more general cost function.
All quantum simulations are performed using the PennyLane library for quantum differentiable programming.
arXiv Detail & Related papers (2021-06-25T18:34:44Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Even more efficient quantum computations of chemistry through tensor
hypercontraction [0.6234350105794442]
We describe quantum circuits with only $widetildecal O(N)$ Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of $N$ arbitrary orbitals.
This is the lowest complexity that has been shown for quantum computations of chemistry within an arbitrary basis.
arXiv Detail & Related papers (2020-11-06T18:03:29Z) - Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer [0.0]
We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
arXiv Detail & Related papers (2020-04-21T23:37:48Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.