論文の概要: CoRe-GD: A Hierarchical Framework for Scalable Graph Visualization with
GNNs
- arxiv url: http://arxiv.org/abs/2402.06706v1
- Date: Fri, 9 Feb 2024 10:50:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 19:44:51.121666
- Title: CoRe-GD: A Hierarchical Framework for Scalable Graph Visualization with
GNNs
- Title(参考訳): CoRe-GD: GNNによるスケーラブルグラフ可視化のための階層的フレームワーク
- Authors: Florian Gr\"otschla, Jo\"el Mathys, Robert Veres, Roger Wattenhofer
- Abstract要約: 我々は、ストレスの最適化を学習できるサブクワッドラティックを備えたスケーラブルなグラフニューラルネットワーク(GNN)ベースのグラフ描画フレームワークを導入する。
古典的応力最適化手法と強制指向レイアウトアルゴリズムに着想を得て,入力グラフの粗い階層を生成する。
ネットワーク内の情報伝達を強化するために,新しい位置変換手法を提案する。
- 参考スコア(独自算出の注目度): 20.706469085872516
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph Visualization, also known as Graph Drawing, aims to find geometric
embeddings of graphs that optimize certain criteria. Stress is a widely used
metric; stress is minimized when every pair of nodes is positioned at their
shortest path distance. However, stress optimization presents computational
challenges due to its inherent complexity and is usually solved using
heuristics in practice. We introduce a scalable Graph Neural Network (GNN)
based Graph Drawing framework with sub-quadratic runtime that can learn to
optimize stress. Inspired by classical stress optimization techniques and
force-directed layout algorithms, we create a coarsening hierarchy for the
input graph. Beginning at the coarsest level, we iteratively refine and
un-coarsen the layout, until we generate an embedding for the original graph.
To enhance information propagation within the network, we propose a novel
positional rewiring technique based on intermediate node positions. Our
empirical evaluation demonstrates that the framework achieves state-of-the-art
performance while remaining scalable.
- Abstract(参考訳): グラフ視覚化はグラフ描画としても知られ、特定の基準を最適化するグラフの幾何学的埋め込みを見つけることを目的としている。
応力は広く用いられる計量であり、各ノードが最短経路距離にあるとき、応力は最小限に抑えられる。
しかしながら、ストレス最適化はその固有の複雑さによる計算上の課題を示し、実際にはヒューリスティックスを用いて解決される。
我々は、ストレスを最適化するために学習可能なサブクアクラティックランタイムを備えたスケーラブルなグラフニューラルネットワーク(GNN)ベースのグラフ描画フレームワークを導入する。
古典的応力最適化手法と力向レイアウトアルゴリズムに着想を得て,入力グラフの粗い階層を作成する。
最も粗いレベルから始めて、レイアウトを反復的に洗練してアンコールし、元のグラフへの埋め込みを生成する。
ネットワーク内の情報伝達を強化するため,中間ノード位置に基づく新しい位置変換手法を提案する。
我々の経験的評価は、このフレームワークが拡張性を維持しながら最先端のパフォーマンスを達成することを示す。
関連論文リスト
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
粗い手法はグラフを小さくするために使われ、計算が高速化される。
これまでの調査では、推論中にコストに対処できなかった。
本稿では, サブグラフベース手法によるGNNのスケーラビリティ向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:27:24Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - LSP : Acceleration and Regularization of Graph Neural Networks via
Locality Sensitive Pruning of Graphs [2.4250821950628234]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクのための非常に成功したツールとして登場した。
大きなグラフは、性能を損なうことなく取り除くことができる多くの冗長なコンポーネントを含むことが多い。
そこで我々はLocality-Sensitive Hashingに基づくグラフプルーニングのためのLocality-Sensitive Pruning(LSP)という体系的手法を提案する。
論文 参考訳(メタデータ) (2021-11-10T14:12:28Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Self-Constructing Graph Convolutional Networks for Semantic Labeling [23.623276007011373]
本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2020-03-15T21:55:24Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。