論文の概要: Self-Constructing Graph Convolutional Networks for Semantic Labeling
- arxiv url: http://arxiv.org/abs/2003.06932v2
- Date: Thu, 23 Apr 2020 13:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 09:04:37.596289
- Title: Self-Constructing Graph Convolutional Networks for Semantic Labeling
- Title(参考訳): 意味ラベリングのための自己構築型グラフ畳み込みネットワーク
- Authors: Qinghui Liu, Michael Kampffmeyer, Robert Jenssen, Arnt-B{\o}rre
Salberg
- Abstract要約: 本稿では,学習可能な潜伏変数を用いて埋め込みを生成する自己構築グラフ(SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所的なコンテキストグラフを自動的に取得することができる。
本稿では,ISPRS Vaihingen データセット上で提案した SCG の有効性と柔軟性を示す。
- 参考スコア(独自算出の注目度): 23.623276007011373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have received increasing attention in many
fields. However, due to the lack of prior graphs, their use for semantic
labeling has been limited. Here, we propose a novel architecture called the
Self-Constructing Graph (SCG), which makes use of learnable latent variables to
generate embeddings and to self-construct the underlying graphs directly from
the input features without relying on manually built prior knowledge graphs.
SCG can automatically obtain optimized non-local context graphs from
complex-shaped objects in aerial imagery. We optimize SCG via an adaptive
diagonal enhancement method and a variational lower bound that consists of a
customized graph reconstruction term and a Kullback-Leibler divergence
regularization term. We demonstrate the effectiveness and flexibility of the
proposed SCG on the publicly available ISPRS Vaihingen dataset and our model
SCG-Net achieves competitive results in terms of F1-score with much fewer
parameters and at a lower computational cost compared to related pure-CNN based
work. Our code will be made public soon.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は多くの分野で注目を集めている。
しかしながら、先行グラフの欠如により、意味的ラベリングの使用は制限されている。
本稿では,学習可能な潜伏変数を用いて埋め込みを生成し,手動で構築した事前知識グラフに頼ることなく,入力機能から直接基礎となるグラフを自己構築する,自己構築型グラフ(Self-Constructing Graph,SCG)を提案する。
SCGは、空中画像中の複雑な形状の物体から、最適化された非局所コンテキストグラフを自動的に取得することができる。
最適化されたグラフ再構成項とkullback-leibler divergence regularization項からなる適応対角拡大法と変分下限を用いてscgを最適化する。
提案するscgの有効性と柔軟性を,isprs vaihingenデータセットとモデルscg-netを用いて実証し,f1-scoreのパラメータ低減と,pure-cnnベースの作業と比較して計算コストの低減により比較検討した。
私たちのコードはもうすぐ公開されるでしょう。
関連論文リスト
- EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction [0.0]
我々は,一組のヒットから粒子トラックを直接再構成するワンショットOCアプローチを検討する。
このアプローチは、グラフを反復的に更新し、各グラフを横断するメッセージをより容易にする。
TrackMLデータセットに関する予備研究は、固定された入力グラフを必要とする方法と比較して、トラック性能が向上したことを示している。
論文 参考訳(メタデータ) (2024-07-18T22:29:24Z) - Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
本稿では,新しいGNNアーキテクチャであるGraph Attention with Structures (GRASS)を紹介する。
GRASSはランダムな正規グラフを重畳して入力グラフをリワイヤし、長距離情報伝搬を実現する。
また、グラフ構造化データに適した新しい付加的注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-08T06:21:56Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
グラフ類似性計算(GSC)は、グラフニューラルネットワーク(GNN)を用いた学習に基づく予測タスクである。
適応正規化(AReg)と呼ばれる,シンプルながら強力な正規化技術によって,高品質な学習が達成可能であることを示す。
推論段階では、GNNエンコーダによって学習されたグラフレベル表現は、ARegを再度使用せずに直接類似度スコアを計算するために使用される。
論文 参考訳(メタデータ) (2024-06-21T07:37:28Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Multi-view Self-Constructing Graph Convolutional Networks with Adaptive
Class Weighting Loss for Semantic Segmentation [23.623276007011373]
セマンティックセグメンテーションのためのMulti-view Self-Constructing Graph Convolutional Networks (MSCG-Net) と呼ばれる新しいアーキテクチャを提案する。
航空機画像の回転不変性を明確に活用するために,複数のビューを利用する。
提案手法の有効性と柔軟性を農業ビジョン課題に適用し,競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-21T22:18:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。