Enhancing O-RAN Security: Evasion Attacks and Robust Defenses for Graph Reinforcement Learning-based Connection Management
- URL: http://arxiv.org/abs/2405.03891v1
- Date: Mon, 6 May 2024 22:27:24 GMT
- Title: Enhancing O-RAN Security: Evasion Attacks and Robust Defenses for Graph Reinforcement Learning-based Connection Management
- Authors: Ravikumar Balakrishnan, Marius Arvinte, Nageen Himayat, Hosein Nikopour, Hassnaa Moustafa,
- Abstract summary: We study various attacks and defenses on machine learning (ML) models in Open Radio Access Networks (O-RAN)
A comprehensive modeling of the security threats and the demonstration of adversarial attacks and defenses is still in its nascent stages.
We develop and demonstrate robust training-based defenses against the challenging physical/jamming-based attacks and show a 15% improvement in the coverage rates when compared to employing no defense over a range of noise budgets.
- Score: 5.791956438741676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial machine learning, focused on studying various attacks and defenses on machine learning (ML) models, is rapidly gaining importance as ML is increasingly being adopted for optimizing wireless systems such as Open Radio Access Networks (O-RAN). A comprehensive modeling of the security threats and the demonstration of adversarial attacks and defenses on practical AI based O-RAN systems is still in its nascent stages. We begin by conducting threat modeling to pinpoint attack surfaces in O-RAN using an ML-based Connection management application (xApp) as an example. The xApp uses a Graph Neural Network trained using Deep Reinforcement Learning and achieves on average 54% improvement in the coverage rate measured as the 5th percentile user data rates. We then formulate and demonstrate evasion attacks that degrade the coverage rates by as much as 50% through injecting bounded noise at different threat surfaces including the open wireless medium itself. Crucially, we also compare and contrast the effectiveness of such attacks on the ML-based xApp and a non-ML based heuristic. We finally develop and demonstrate robust training-based defenses against the challenging physical/jamming-based attacks and show a 15% improvement in the coverage rates when compared to employing no defense over a range of noise budgets
Related papers
- System-level Analysis of Adversarial Attacks and Defenses on Intelligence in O-RAN based Cellular Networks [2.1824191810542666]
We conduct a thorough system-level investigation of cyber threats within the Open Radio Access Network technology.
We focus on machine learning (ML) intelligence components known as xApps within the O-RAN's near-real-time RAN Intelligent Controller (near-RT RIC) platform.
Our study begins by developing a malicious xApp designed to execute adversarial attacks on two types of test data.
To mitigate these threats, we utilize a distillation technique that involves training a teacher model at a high softmax temperature and transferring its knowledge to a student model trained at a lower softmax temperature.
arXiv Detail & Related papers (2024-02-10T00:26:44Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Untargeted White-box Adversarial Attack with Heuristic Defence Methods
in Real-time Deep Learning based Network Intrusion Detection System [0.0]
In Adversarial Machine Learning (AML), malicious actors aim to fool the Machine Learning (ML) and Deep Learning (DL) models to produce incorrect predictions.
AML is an emerging research domain, and it has become a necessity for the in-depth study of adversarial attacks.
We implement four powerful adversarial attack techniques, namely, Fast Gradient Sign Method (FGSM), Jacobian Saliency Map Attack (JSMA), Projected Gradient Descent (PGD) and Carlini & Wagner (C&W) in NIDS.
arXiv Detail & Related papers (2023-10-05T06:32:56Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
We propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments.
We first detect if there is an adversarial attack on a given sample using novelty detection algorithms.
If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples.
arXiv Detail & Related papers (2023-01-23T22:10:40Z) - SPIN: Simulated Poisoning and Inversion Network for Federated
Learning-Based 6G Vehicular Networks [9.494669823390648]
Vehicular networks have always faced data privacy preservation concerns.
The technique is quite vulnerable to model inversion and model poisoning attacks.
We propose simulated poisoning and inversion network (SPIN) that leverages the optimization approach for reconstructing data.
arXiv Detail & Related papers (2022-11-21T10:07:13Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Universal Adversarial Attacks on Neural Networks for Power Allocation in
a Massive MIMO System [60.46526086158021]
We propose universal adversarial perturbation (UAP)-crafting methods as white-box and black-box attacks.
We show that the adversarial success rate can achieve up to 60% and 40%, respectively.
The proposed UAP-based attacks make a more practical and realistic approach as compared to classical white-box attacks.
arXiv Detail & Related papers (2021-10-10T08:21:03Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Progressive Defense Against Adversarial Attacks for Deep Learning as a
Service in Internet of Things [9.753864027359521]
Some Deep Neural Networks (DNN) can be easily misled by adding relatively small but adversarial perturbations to the input.
We present a defense strategy called a progressive defense against adversarial attacks (PDAAA) for efficiently and effectively filtering out the adversarial pixel mutations.
The result shows it outperforms the state-of-the-art while reducing the cost of model training by 50% on average.
arXiv Detail & Related papers (2020-10-15T06:40:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.