ChemLLM: A Chemical Large Language Model
- URL: http://arxiv.org/abs/2402.06852v2
- Date: Thu, 25 Apr 2024 14:34:28 GMT
- Title: ChemLLM: A Chemical Large Language Model
- Authors: Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xiangyu Yue, Wanli Ouyang, Dongzhan Zhou, Shufei Zhang, Mao Su, Han-Sen Zhong, Yuqiang Li,
- Abstract summary: Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
- Score: 49.308528569982805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have made impressive progress in chemistry applications. However, the community lacks an LLM specifically designed for chemistry. The main challenges are two-fold: firstly, most chemical data and scientific knowledge are stored in structured databases, which limits the model's ability to sustain coherent dialogue when used directly. Secondly, there is an absence of objective and fair benchmark that encompass most chemistry tasks. Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry. It also includes ChemData, a dataset specifically designed for instruction tuning, and ChemBench, a robust benchmark covering nine essential chemistry tasks. ChemLLM is adept at performing various tasks across chemical disciplines with fluid dialogue interaction. Notably, ChemLLM achieves results comparable to GPT-4 on the core chemical tasks and demonstrates competitive performance with LLMs of similar size in general scenarios. ChemLLM paves a new path for exploration in chemical studies, and our method of incorporating structured chemical knowledge into dialogue systems sets a new standard for developing LLMs in various scientific fields. Codes, Datasets, and Model weights are publicly accessible at https://hf.co/AI4Chem
Related papers
- ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
We introduce textbfChemVLM, an open-source chemical multimodal large language model for chemical applications.
ChemVLM is trained on a carefully curated bilingual dataset that enhances its ability to understand both textual and visual chemical information.
We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks.
arXiv Detail & Related papers (2024-08-14T01:16:40Z) - ChemDFM: A Large Language Foundation Model for Chemistry [27.864255196445324]
A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry.
We develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions.
We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface.
arXiv Detail & Related papers (2024-01-26T12:45:55Z) - Structured Chemistry Reasoning with Large Language Models [70.13959639460015]
Large Language Models (LLMs) excel in diverse areas, yet struggle with complex scientific reasoning, especially in chemistry.
We introduce StructChem, a simple yet effective prompting strategy that offers the desired guidance and substantially boosts the LLMs' chemical reasoning capability.
Tests across four chemistry areas -- quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem substantially enhances GPT-4's performance, with up to 30% peak improvement.
arXiv Detail & Related papers (2023-11-16T08:20:36Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-X automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology.
Chemist-X interrogates online molecular databases and distills critical data from the latest literature database.
Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - What can Large Language Models do in chemistry? A comprehensive
benchmark on eight tasks [41.9830989458936]
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged.
We aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain.
arXiv Detail & Related papers (2023-05-27T14:17:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.