Structured Chemistry Reasoning with Large Language Models
- URL: http://arxiv.org/abs/2311.09656v2
- Date: Fri, 9 Feb 2024 16:35:28 GMT
- Title: Structured Chemistry Reasoning with Large Language Models
- Authors: Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Yejin Choi, Jiawei
Han, Lianhui Qin
- Abstract summary: Large Language Models (LLMs) excel in diverse areas, yet struggle with complex scientific reasoning, especially in chemistry.
We introduce StructChem, a simple yet effective prompting strategy that offers the desired guidance and substantially boosts the LLMs' chemical reasoning capability.
Tests across four chemistry areas -- quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem substantially enhances GPT-4's performance, with up to 30% peak improvement.
- Score: 70.13959639460015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) excel in diverse areas, yet struggle with
complex scientific reasoning, especially in the field of chemistry. Different
from the simple chemistry tasks (e.g., molecule classification) addressed in
previous studies, complex chemistry problems require not only vast knowledge
and precise calculation, but also compositional reasoning about rich dynamic
interactions of different concepts (e.g., temperature changes). Our study shows
that even advanced LLMs, like GPT-4, can fail easily in different ways.
Interestingly, the errors often stem not from a lack of domain knowledge within
the LLMs, but rather from the absence of an effective reasoning structure that
guides the LLMs to elicit the right knowledge, incorporate the knowledge in
step-by-step reasoning, and iteratively refine results for further improved
quality. On this basis, we introduce StructChem, a simple yet effective
prompting strategy that offers the desired guidance and substantially boosts
the LLMs' chemical reasoning capability. Testing across four chemistry areas --
quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem
substantially enhances GPT-4's performance, with up to 30\% peak improvement.
Our analysis also underscores the unique difficulties of precise grounded
reasoning in science with LLMs, highlighting a need for more research in this
area. Code is available at \url{https://github.com/ozyyshr/StructChem}.
Related papers
- ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning [64.2106664137118]
ChemAgent is a novel framework designed to improve the performance of large language models (LLMs)
It is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries.
When presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory.
arXiv Detail & Related papers (2025-01-11T17:10:30Z) - From Generalist to Specialist: A Survey of Large Language Models for Chemistry [14.317448405387195]
Large Language Models (LLMs) have significantly transformed our daily life and established a new paradigm in natural language processing (NLP)
The predominant pretraining of LLMs on extensive web-based texts remains insufficient for advanced scientific discovery, particularly in chemistry.
Although several studies have reviewed Pretrained Language Models (PLMs) in chemistry, there is a conspicuous absence of a systematic survey specifically focused on chemistry-oriented LLMs.
arXiv Detail & Related papers (2024-12-28T03:40:25Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
We introduce textbfChemVLM, an open-source chemical multimodal large language model for chemical applications.
ChemVLM is trained on a carefully curated bilingual dataset that enhances its ability to understand both textual and visual chemical information.
We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks.
arXiv Detail & Related papers (2024-08-14T01:16:40Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
arXiv Detail & Related papers (2024-02-10T01:11:59Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z) - What can Large Language Models do in chemistry? A comprehensive
benchmark on eight tasks [41.9830989458936]
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged.
We aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain.
arXiv Detail & Related papers (2023-05-27T14:17:33Z) - ChemCrow: Augmenting large-language models with chemistry tools [0.9195187117013247]
Large-language models (LLMs) have shown strong performance in tasks across domains, but struggle with chemistry-related problems.
In this study, we introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery, and materials design.
Our agent autonomously planned and executed the syntheses of an insect repellent, three organocatalysts, and guided the discovery of a novel chromophore.
arXiv Detail & Related papers (2023-04-11T17:41:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.