ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
- URL: http://arxiv.org/abs/2408.07246v2
- Date: Fri, 16 Aug 2024 16:46:32 GMT
- Title: ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
- Authors: Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yaotian Yang, Xinrui Xiong, Weiyun Wang, Zhe Chen, Wenhai Wang, Wei Li, Shufei Zhang, Mao Su, Wanli Ouyang, Yuqiang Li, Dongzhan Zhou,
- Abstract summary: We introduce textbfChemVLM, an open-source chemical multimodal large language model for chemical applications.
ChemVLM is trained on a carefully curated bilingual dataset that enhances its ability to understand both textual and visual chemical information.
We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks.
- Score: 50.15254966969718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
Related papers
- ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - ChemDFM-X: Towards Large Multimodal Model for Chemistry [16.811223849365483]
We introduce the first Cross-modal Dialogue Foundation Model for Chemistry (ChemDFM-X)
Diverse multimodal data are generated from an initial modality by approximate calculations and task-specific model predictions.
ChemDFM-X is evaluated on extensive experiments of different chemical tasks with various data modalities.
arXiv Detail & Related papers (2024-09-20T03:55:34Z) - Are large language models superhuman chemists? [4.87961182129702]
Large language models (LLMs) have gained widespread interest due to their ability to process human language and perform tasks on which they have not been explicitly trained.
Here, we introduce "ChemBench," an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs.
We curated more than 2,700 question-answer pairs, evaluated leading open- and closed-source LLMs, and found that the best models outperformed the best human chemists.
arXiv Detail & Related papers (2024-04-01T20:56:25Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
Large language models (LLMs) have made impressive progress in chemistry applications.
However, the community lacks an LLM specifically designed for chemistry.
Here, we introduce ChemLLM, a comprehensive framework that features the first LLM dedicated to chemistry.
arXiv Detail & Related papers (2024-02-10T01:11:59Z) - ChemDFM: A Large Language Foundation Model for Chemistry [27.864255196445324]
A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry.
We develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions.
We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface.
arXiv Detail & Related papers (2024-01-26T12:45:55Z) - Structured Chemistry Reasoning with Large Language Models [70.13959639460015]
Large Language Models (LLMs) excel in diverse areas, yet struggle with complex scientific reasoning, especially in chemistry.
We introduce StructChem, a simple yet effective prompting strategy that offers the desired guidance and substantially boosts the LLMs' chemical reasoning capability.
Tests across four chemistry areas -- quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem substantially enhances GPT-4's performance, with up to 30% peak improvement.
arXiv Detail & Related papers (2023-11-16T08:20:36Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-X automates the reaction condition recommendation (RCR) task in chemical synthesis with retrieval-augmented generation (RAG) technology.
Chemist-X interrogates online molecular databases and distills critical data from the latest literature database.
Chemist-X considerably reduces chemists' workload and allows them to focus on more fundamental and creative problems.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions.
In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts.
arXiv Detail & Related papers (2022-12-21T06:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.