論文の概要: DimVis: Interpreting Visual Clusters in Dimensionality Reduction With
Explainable Boosting Machine
- arxiv url: http://arxiv.org/abs/2402.06885v1
- Date: Sat, 10 Feb 2024 04:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 18:41:40.941787
- Title: DimVis: Interpreting Visual Clusters in Dimensionality Reduction With
Explainable Boosting Machine
- Title(参考訳): DimVis: 説明可能なブースティングマシンによる視覚クラスタの次元化の解釈
- Authors: Parisa Salmanian, Angelos Chatzimparmpas, Ali Can Karaca, Rafael M.
Martins
- Abstract要約: DimVisは、DRプロジェクションの解釈アシスタントとして、教師付きExplainable Boosting Machine(EBM)モデルを使用するツールである。
本ツールは,視覚的クラスタにおける特徴関連性の解釈を提供することにより,高次元データ解析を容易にする。
- 参考スコア(独自算出の注目度): 3.5775697416994485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality Reduction (DR) techniques such as t-SNE and UMAP are popular
for transforming complex datasets into simpler visual representations. However,
while effective in uncovering general dataset patterns, these methods may
introduce artifacts and suffer from interpretability issues. This paper
presents DimVis, a visualization tool that employs supervised Explainable
Boosting Machine (EBM) models (trained on user-selected data of interest) as an
interpretation assistant for DR projections. Our tool facilitates
high-dimensional data analysis by providing an interpretation of feature
relevance in visual clusters through interactive exploration of UMAP
projections. Specifically, DimVis uses a contrastive EBM model that is trained
in real time to differentiate between the data inside and outside a cluster of
interest. Taking advantage of the inherent explainable nature of the EBM, we
then use this model to interpret the cluster itself via single and pairwise
feature comparisons in a ranking based on the EBM model's feature importance.
The applicability and effectiveness of DimVis are demonstrated through two use
cases involving real-world datasets, and we also discuss the limitations and
potential directions for future research.
- Abstract(参考訳): t-SNEやUMAPのようなDR技術は、複雑なデータセットを単純な視覚表現に変換するのに人気がある。
しかし、一般的なデータセットパターンを明らかにするのに効果的であるが、これらの方法はアーティファクトを導入し、解釈可能性の問題に苦しむ可能性がある。
本稿では, drプロジェクションの解釈アシスタントとして, 教師付き説明可能ブースティングマシン(ebm)モデル(ユーザ選択データに基づく学習)を用いた可視化ツールdimvisを提案する。
UMAPプロジェクションのインタラクティブな探索により,視覚クラスタの特徴的関連性を解釈し,高次元データ解析を容易にする。
具体的には、DimVisはコントラストのあるEMMモデルを使用して、リアルタイムにトレーニングされ、関心のクラスタ内と外部のデータを区別する。
EBMの本質的に説明可能な性質を生かして、このモデルを用いて、ESMモデルの特徴的重要性に基づいたランキングにおいて、クラスタ自体をシングルとペアの特徴比較によって解釈する。
DimVisの適用性と有効性は,実世界のデータセットを含む2つのユースケースを通じて実証され,今後の研究の限界と可能性についても論じる。
関連論文リスト
- PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
論文 参考訳(メタデータ) (2024-09-04T11:19:17Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - VERA: Generating Visual Explanations of Two-Dimensional Embeddings via Region Annotation [0.0]
Visual Explanations via Region (VERA) は2次元埋め込みの視覚的説明を生成する自動埋め込みアノテーション手法である。
VERAは、埋め込み空間内の異なる領域を特徴付ける情報的説明を生成し、ユーザがその埋め込み風景を一目で概観することができる。
実世界のデータセット上でのVERAの利用について説明するとともに,本手法の有効性を比較ユーザスタディで検証する。
論文 参考訳(メタデータ) (2024-06-07T10:23:03Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Beyond Importance Scores: Interpreting Tabular ML by Visualizing Feature
Semantics [17.410093908967976]
機械学習(ML)モデルが批判的な意思決定に広く利用されているため、解釈可能性(interpretability)は活発な研究トピックになりつつある。
表データに使われている既存の解釈可能性の手法の多くは、特徴重要点のみを報告している。
我々は,新しいグローバル解釈可能性法であるFeature Vectorsを導入することで,この制限に対処する。
論文 参考訳(メタデータ) (2021-11-10T19:42:33Z) - AdViCE: Aggregated Visual Counterfactual Explanations for Machine
Learning Model Validation [9.996986104171754]
我々は,ブラックボックスモデルデバッグとバリデーションでユーザをガイドすることを目的とした視覚分析ツールであるAdViCEを紹介する。
1) ユーザ定義データサブセットの意思決定の比較を可能にするインタラクティブな可視化,(2) 反現実的説明の計算と視覚化を行うアルゴリズムとビジュアルデザイン。
論文 参考訳(メタデータ) (2021-09-12T22:52:12Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z) - The Role of the Input in Natural Language Video Description [60.03448250024277]
自然言語ビデオ記述(NLVD)は最近、コンピュータビジョン、自然言語処理、マルチメディア、自律型ロボティクスのコミュニティに強い関心を集めている。
本研究は, 視覚入力の役割に関する広範な研究を行い, 総合的なNLP性能について評価した。
t-SNEをベースとした解析を行い,検討した変換が全体的視覚データ分布に与える影響を評価する。
論文 参考訳(メタデータ) (2021-02-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。