論文の概要: PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation
- arxiv url: http://arxiv.org/abs/2409.02617v1
- Date: Wed, 4 Sep 2024 11:19:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 18:53:31.401212
- Title: PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation
- Title(参考訳): PUB:Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation
- Authors: Aneta Pawelec, Victoria Sara Wesołowska, Zuzanna Bączek, Piotr Sankowski,
- Abstract要約: 本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
- 参考スコア(独自算出の注目度): 2.1184929769291294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of large language models (LLMs) to interpret visual representations of data is crucial for advancing their application in data analysis and decision-making processes. This paper presents a novel synthetic dataset designed to evaluate the proficiency of LLMs in interpreting various forms of data visualizations, including plots like time series, histograms, violins, boxplots, and clusters. Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios. We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models like ChatGPT or Gemini, assessing their understanding and interpretative accuracy. To ensure data integrity, our benchmark dataset is generated automatically, making it entirely new and free from prior exposure to the models being tested. This strategy allows us to evaluate the models' ability to truly interpret and understand the data, eliminating possibility of pre-learned responses, and allowing for an unbiased evaluation of the models' capabilities. We also introduce quantitative metrics to assess the performance of the models, providing a robust and comprehensive evaluation tool. Benchmarking several state-of-the-art LLMs with this dataset reveals varying degrees of success, highlighting specific strengths and weaknesses in interpreting diverse types of visual data. The results provide valuable insights into the current capabilities of LLMs and identify key areas for improvement. This work establishes a foundational benchmark for future research and development aimed at enhancing the visual interpretative abilities of language models. In the future, improved LLMs with robust visual interpretation skills can significantly aid in automated data analysis, scientific research, educational tools, and business intelligence applications.
- Abstract(参考訳): 大規模言語モデル(LLM)がデータの視覚的表現を解釈する能力は、データ分析や意思決定プロセスにおけるその応用を進める上で不可欠である。
本稿では, 時系列, ヒストグラム, ヴァイオリン, ボックスプロット, クラスタなど, 様々なデータ視覚化の形式を解釈する上で, LLMの習熟度を評価するために設計された新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、ChatGPTやGeminiといった最先端モデルのベンチマークを行い、その理解と解釈精度を評価した。
データ整合性を確保するため、ベンチマークデータセットは自動生成され、テスト対象のモデルに対する事前の露出から完全に新しく、不要になる。
この戦略により、モデルが真に解釈し、データを理解する能力を評価し、事前学習された応答の可能性を排除し、モデルの能力の偏りのない評価を可能にする。
また、モデルの性能を評価するための定量的指標を導入し、堅牢で包括的な評価ツールを提供します。
このデータセットでいくつかの最先端のLCMをベンチマークすると、様々な成功の度合いが示され、様々な種類の視覚データを解釈する際の特定の強みと弱点が浮き彫りにされている。
この結果は、LLMの現在の能力に関する貴重な洞察を与え、改善のための重要な領域を特定します。
本研究は,言語モデルの視覚的解釈能力の向上を目的とした,将来の研究開発のための基礎的ベンチマークを確立する。
将来的には、堅牢な視覚的解釈能力を備えたLLMの改善は、自動データ分析、科学研究、教育ツール、ビジネスインテリジェンスアプリケーションに大きく貢献する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) は言語理解能力、画像理解能力、言語と画像の接地能力を客観的に評価する重要なクロスモーダルタスクである。
我々は2つの重要な特徴を特徴とする新しいRECデータセットを構築した。
これには、既存のデータに基づいて微細な編集と生成によって作成された否定的なテキストと画像が含まれる。
論文 参考訳(メタデータ) (2024-09-23T06:56:51Z) - On Evaluation of Vision Datasets and Models using Human Competency Frameworks [20.802372291783488]
アイテム応答理論(IRT)は、モデルと各データセット項目のアンサンブルに対して解釈可能な潜在パラメータを推論するフレームワークである。
モデルキャリブレーションを評価し、情報的データサブセットを選択し、コンピュータビジョンにおけるモデルとデータセットを解析・比較するための潜在パラメータの有用性を実証する。
論文 参考訳(メタデータ) (2024-09-06T06:20:11Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
マルチモーダル大言語モデル(MLLM)は、チャート質問応答(CQA)に大きな可能性を示す
近年の取り組みは、データ収集と合成によるデータセットのスケールアップに重点を置いている。
本稿では,トレーニングデータセットの強化とモデル開発を指導するための,可視化参照型指導チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:04:34Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
ELEVATERは、事前訓練された言語拡張ビジュアルモデルの比較と評価を行う最初のベンチマークである。
20の画像分類データセットと35のオブジェクト検出データセットで構成され、それぞれが外部知識で拡張されている。
研究コミュニティ向けのツールキットと評価プラットフォームをリリースします。
論文 参考訳(メタデータ) (2022-04-19T10:23:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。