Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF
- URL: http://arxiv.org/abs/2402.06886v3
- Date: Sat, 1 Jun 2024 02:41:07 GMT
- Title: Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF
- Authors: Han Shen, Zhuoran Yang, Tianyi Chen,
- Abstract summary: We introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation.
We provide theoretical studies of the problem landscape and its penalty-based gradient (policy) algorithms.
We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg Markov game, RL from human feedback and incentive design.
- Score: 82.73541793388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization has been recently applied to many machine learning tasks. However, their applications have been restricted to the supervised learning setting, where static objective functions with benign structures are considered. But bilevel problems such as incentive design, inverse reinforcement learning (RL), and RL from human feedback (RLHF) are often modeled as dynamic objective functions that go beyond the simple static objective structures, which pose significant challenges of using existing bilevel solutions. To tackle this new class of bilevel problems, we introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation. We provide theoretical studies of the problem landscape and its penalty-based (policy) gradient algorithms. We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg Markov game, RL from human feedback and incentive design.
Related papers
- A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy [45.982542530484274]
Large-scale non Bi-Level (BLO) problems are increasingly applied in machine learning.
These challenges involve ensuring computational efficiency and providing theoretical guarantees.
arXiv Detail & Related papers (2024-05-16T09:33:28Z) - Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
This paper is the first to propose considering the RRL problems within the positional differential game theory.
Namely, we prove that under Isaacs's condition, the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations.
We present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
arXiv Detail & Related papers (2024-05-03T12:21:43Z) - A Subgame Perfect Equilibrium Reinforcement Learning Approach to
Time-inconsistent Problems [4.314956204483074]
We establish a subgame perfect equilibrium reinforcement learning framework for time-inconsistent (TIC) problems.
We propose a new class of algorithms, called backward policy iteration (BPI), that solves SPERL and addresses both challenges.
To demonstrate the practical usage of BPI as a training framework, we adapt standard RL simulation methods and derive two BPI-based training algorithms.
arXiv Detail & Related papers (2021-10-27T09:21:35Z) - A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization [41.894281911990554]
We develop a novel Bi-level Descent Aggregation (BDA) framework for bi-level learning tasks.
BDA aggregates hierarchical objectives of both upper level and lower level.
We propose a new proof recipe to improve the convergence results of conventional gradient-based bi-level methods.
arXiv Detail & Related papers (2021-02-16T06:58:12Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
Reinforcement learning (RL) has recently emerged as a new framework to tackle these problems.
We propose a general RL framework that not only exhibits state-of-the-art empirical performance but also generalizes to a variety class of COPs.
arXiv Detail & Related papers (2021-02-14T18:05:42Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents.
We present a novel, scalable two-player RL algorithm, which is a sampling variant of the two-player policy method.
arXiv Detail & Related papers (2020-02-14T14:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.