A Subgame Perfect Equilibrium Reinforcement Learning Approach to
Time-inconsistent Problems
- URL: http://arxiv.org/abs/2110.14295v1
- Date: Wed, 27 Oct 2021 09:21:35 GMT
- Title: A Subgame Perfect Equilibrium Reinforcement Learning Approach to
Time-inconsistent Problems
- Authors: Nixie S. Lesmana and Chi Seng Pun
- Abstract summary: We establish a subgame perfect equilibrium reinforcement learning framework for time-inconsistent (TIC) problems.
We propose a new class of algorithms, called backward policy iteration (BPI), that solves SPERL and addresses both challenges.
To demonstrate the practical usage of BPI as a training framework, we adapt standard RL simulation methods and derive two BPI-based training algorithms.
- Score: 4.314956204483074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we establish a subgame perfect equilibrium reinforcement
learning (SPERL) framework for time-inconsistent (TIC) problems. In the context
of RL, TIC problems are known to face two main challenges: the non-existence of
natural recursive relationships between value functions at different time
points and the violation of Bellman's principle of optimality that raises
questions on the applicability of standard policy iteration algorithms for
unprovable policy improvement theorems. We adapt an extended dynamic
programming theory and propose a new class of algorithms, called backward
policy iteration (BPI), that solves SPERL and addresses both challenges. To
demonstrate the practical usage of BPI as a training framework, we adapt
standard RL simulation methods and derive two BPI-based training algorithms. We
examine our derived training frameworks on a mean-variance portfolio selection
problem and evaluate some performance metrics including convergence and model
identifiability.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
This paper is the first to propose considering the RRL problems within the positional differential game theory.
Namely, we prove that under Isaacs's condition, the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations.
We present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
arXiv Detail & Related papers (2024-05-03T12:21:43Z) - Constrained Reinforcement Learning Under Model Mismatch [18.05296241839688]
Existing studies on constrained reinforcement learning (RL) may obtain a well-performing policy in the training environment.
However, when deployed in a real environment, it may easily violate constraints that were originally satisfied during training because there might be model mismatch between the training and real environments.
We develop a Robust Constrained Policy Optimization (RCPO) algorithm, which is the first algorithm that applies to large/continuous state space and has theoretical guarantees on worst-case reward improvement and constraint violation at each iteration during the training.
arXiv Detail & Related papers (2024-05-02T14:31:52Z) - Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF [82.73541793388]
We introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation.
We provide theoretical studies of the problem landscape and its penalty-based gradient (policy) algorithms.
We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg Markov game, RL from human feedback and incentive design.
arXiv Detail & Related papers (2024-02-10T04:54:15Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
We introduce the study of reinforcement learning with stepwise fairness constraints.
We provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation.
arXiv Detail & Related papers (2022-11-08T04:06:23Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.