論文の概要: A Change Detection Reality Check
- arxiv url: http://arxiv.org/abs/2402.06994v1
- Date: Sat, 10 Feb 2024 17:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 18:08:53.557364
- Title: A Change Detection Reality Check
- Title(参考訳): 変化検出現実チェック
- Authors: Isaac Corley, Caleb Robinson, Anthony Ortiz
- Abstract要約: 近年,遠隔センシング文献における変化検出深層学習アーキテクチャの提案が爆発的に増えている。
本稿では,簡単なU-Netセグメンテーションベースラインをトレーニングのトリックや複雑なアーキテクチャ変更なしに結論付ける実験を行う。
- 参考スコア(独自算出の注目度): 4.633235430324764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been an explosion of proposed change detection
deep learning architectures in the remote sensing literature. These approaches
claim to offer state-of the-art performance on different standard benchmark
datasets. However, has the field truly made significant progress? In this paper
we perform experiments which conclude a simple U-Net segmentation baseline
without training tricks or complicated architectural changes is still a top
performer for the task of change detection.
- Abstract(参考訳): 近年,リモートセンシング文学における変化検出深層学習アーキテクチャの提案が爆発的に増えている。
これらのアプローチは、異なる標準ベンチマークデータセットで最先端のパフォーマンスを提供すると主張している。
しかし、この分野は本当に大きな進歩を遂げたのだろうか?
本稿では、簡単なu-netセグメンテーションベースラインを訓練や複雑なアーキテクチャの変更を伴わずに結論づける実験を行う。
関連論文リスト
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
我々は,CDQAG (Change Detection Question Answering and Grounding) という新しいタスクを導入する。
CDQAGは、解釈可能なテキスト回答と直感的な視覚的証拠を提供することで、従来の変更検出タスクを拡張している。
QAG-360Kと呼ばれる最初のCDQAGベンチマークデータセットを構築し、360K以上の質問、テキスト回答、およびそれに対応する高品質な視覚マスクを含む。
論文 参考訳(メタデータ) (2024-10-31T11:20:13Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
変化検出はリモートセンシングにおいて重要な課題であり、環境変化、都市の成長、災害影響のモニタリングを可能にする。
近年の機械学習、特に拡散モデルのような生成モデルの発展は、変化検出精度を高める新たな機会を提供する。
本稿では,安定拡散モデルの強度と構造類似度指数(SSIM)を組み合わせ,頑健で解釈可能な変化マップを作成する新しい変化検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:54:08Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
日常的な屋内ナビゲーションでは、ロボットは区別できない小さな変化物体を検出する必要がある。
既存の技術は、変更検出モデルを正規化するために、高品質なクラス固有オブジェクトに依存している。
本研究では,受動とアクティブビジョンの両方を改善するために,DoIの概念を検討する。
論文 参考訳(メタデータ) (2024-05-10T01:56:39Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
変更検出はリモートセンシングにおいて必須かつ広く利用されるタスクである。
時間とともに同じ地理的領域で起きている変化を検出し、分析することを目的としている。
ディープラーニングは、これらの課題を抽出し対処するための強力なツールとして登場した。
論文 参考訳(メタデータ) (2023-05-09T23:52:37Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [82.32018252867277]
本稿では,一般のコンボリューションとアテンション演算子の真の利益を,詳細な研究により同定することを目的とする。
注意や畳み込みのようなこれらの特徴変換モジュールの主な違いは、それらの空間的特徴集約アプローチにある。
各種課題の実験と帰納的バイアスの解析により,ネットワークレベルとブロックレベルの高度な設計により,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-10T18:59:43Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Deep few-shot learning for bi-temporal building change detection [0.0]
モンテカルロのドロップアウトとリモートセンシングによる変化検出のための,新しい深部数ショット学習法を提案する。
このセットアップは、変更検出を構築するためにラベル付けされたバイテンポラル光学画像を含む、小さなデータセットに基づいている。
論文 参考訳(メタデータ) (2021-08-25T14:38:21Z) - Deep learning approaches to Earth Observation change detection [0.0]
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)の2つのアプローチを提案する。
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)のための2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-13T14:34:59Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。