論文の概要: Exploring Foundation Models in Remote Sensing Image Change Detection: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2410.07824v1
- Date: Thu, 10 Oct 2024 11:16:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:46:14.518494
- Title: Exploring Foundation Models in Remote Sensing Image Change Detection: A Comprehensive Survey
- Title(参考訳): リモートセンシング画像変化検出のための基礎モデル探索:総合的調査
- Authors: Zihan Yu, Tianxiao Li, Yuxin Zhu, Rongze Pan,
- Abstract要約: 変化検出は環境モニタリング,都市開発,土地利用分析などの分野に広く応用されている。
ディープラーニング、特に基礎モデルの開発は、特徴抽出とデータ融合のためのより強力なソリューションを提供してきた。
本稿では, リモートセンシングタスクにおける基礎モデルの適用を中心に, 変更検出の分野における最新の進歩を体系的にレビューする。
- 参考スコア(独自算出の注目度): 2.9373912230684565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection, as an important and widely applied technique in the field of remote sensing, aims to analyze changes in surface areas over time and has broad applications in areas such as environmental monitoring, urban development, and land use analysis.In recent years, deep learning, especially the development of foundation models, has provided more powerful solutions for feature extraction and data fusion, effectively addressing these complexities. This paper systematically reviews the latest advancements in the field of change detection, with a focus on the application of foundation models in remote sensing tasks.
- Abstract(参考訳): リモートセンシングの分野では, 環境モニタリング, 都市開発, 土地利用分析などの分野に広く応用されており, 近年, 深層学習, 特に基礎モデルの開発が, 特徴抽出とデータ融合のための強力なソリューションを提供しており, それらの複雑さに効果的に対処している。
本稿では, リモートセンシングタスクにおける基礎モデルの適用を中心に, 変更検出の分野における最新の進歩を体系的にレビューする。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - MineNetCD: A Benchmark for Global Mining Change Detection on Remote Sensing Imagery [29.38505174142192]
リモートセンシング画像を用いた地球規模の地雷検出のためのベンチマークであるMineNetCDを紹介する。
まず,両時間高分解能リモートセンシング画像の70万枚以上のパッチを用いたグローバルな地雷変化検出データセットを構築した。
次に,変更対応のFast Fourier Transform (ChangeFFT) モジュールをベースとした新しいベースラインモデルを提案する。
第3に、13以上の高度な変更検出モデルを統合する統合された変更検出フレームワークを構築する。
論文 参考訳(メタデータ) (2024-07-04T14:45:44Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Time Travelling Pixels: Bitemporal Features Integration with Foundation
Model for Remote Sensing Image Change Detection [28.40070234949818]
Time Travelling Pixels (TTP)は、潜在知識基盤モデルを変更検出に統合する新しいアプローチである。
LEVIR-CDで得られた最先端の成績は,TTPの有効性を裏付けるものであった。
論文 参考訳(メタデータ) (2023-12-23T08:56:52Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
変更検出はリモートセンシングにおいて必須かつ広く利用されるタスクである。
時間とともに同じ地理的領域で起きている変化を検出し、分析することを目的としている。
ディープラーニングは、これらの課題を抽出し対処するための強力なツールとして登場した。
論文 参考訳(メタデータ) (2023-05-09T23:52:37Z) - Deep learning approaches to Earth Observation change detection [0.0]
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)の2つのアプローチを提案する。
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)のための2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-13T14:34:59Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。